HUANG Yonghua, LIANG Ziyan, ZHUANG Wei, YANG Haiyang. Cognitive Learning Methods for Mass Eccentricity Identification of Unmanned Bicycles[J]. Journal of Mechanical Engineering, 2024, 60(23): 140-151.
[1] JONES D E H. The stability of the bicycle[J]. Physics Today,1970,23(4):34-40. [2] KOOIJMAN J,MEIJAARD J P,PAPADOPOULOS J M,et al. A bicycle can be self-stable without gyroscopic or caster effects[J]. Science,2011,332(6027):339-342. [3] 艾红,童璐,李成荣. 无机械辅助结构自行车机器人控制仿真及实现[J]. 信息与控制,2019(2):187-193. AI Hong,TONG Lu,LI Chengrong. Control simulation and implementation of a bicycle robot without a mechanically assisted structure[J]. Information and Control,2019(2):187-193. [4] HUANG Y H,LIAO Q Z,GUO L,et al. Simple realization of balanced motions under different speeds for a mechanical regulator-free bicycle robot[J]. Robotica,2014,72(9):1-15. [5] HUANG Y H,LIAO Q Z,GUO L,et al. Balanced motions realization for a mechanical regulators free and front-wheel drive bicycle robot under zero forward speed[J]. International Journal of Advanced Robotic Systems,2013,10(317):1-9. [6] YONGLI Z,LIU Y,YI G. Model analysis of unmanned bicycle and variable gain lqr control[C]// 2020 IEEE 9th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). IEEE,2020,9:1196-1200. [7] BAQUERO M,CORTES J,ARCOS J,et al. A robust two-stage active disturbance rejection control for the stabilization of a riderless bicycle[J]. Multibody System Dynamics,2019,45(1):7-35. [8] ZHANG K,YIN D. A control approach adaptive to load and road slope for electric power assisted bicycle[C]// Chinese Control Conference (CCC),Dalian,China,2017:3414-3418. [9] 庄未,杨继伟,黄用华,等. 考虑车轮纵向滑动的无人自行车平衡控制实现[J]. 信息与控制,2022,51(5):587-595. ZHUANG Wei,YANG Jiwei,HUANG Yonghua,et al. The realization of balance control of an unmanned bicycle by considering wheels’ longitudinal sliding[J]. Information and Control,2022,51(5):587-595. [10] HASHEMNIA S,SHARIAT P M,MAHJOOB M J. Unmanned bicycle balancing via Lyapunov rule-based fuzzy control[J]. Multibody System Dynamics,2014,31:147-168. [11] 李艳,王涵. 基于复合控制的自行车机器人平衡控制[J]. 现代电子技术,2019,42(2):177-182. LI Yan,WANG Han. Balance control of bicycle robot based on compound control[J]. Modern Electronics Technique,2019,42(2):177-182. [12] 李凯,周璟成. 基于图像分析的质心和转动惯量测量方法[J]. 力学与实践,2021,43(5):771-775. LI Kai,ZHOU Jingcheng. Center of mass and moment of inertia measurement method based on image analysis[J]. Mechanics in Engineering,2021,43(5):771-775. [13] 王若琳,胡翔,余烨,等. 基于扭摆的落体质心与光心距离的高精度测量[J]. 仪器仪表学报,2022,43(8):85-92. WANG Ruolin,HU Xiang,YU Ye,et al. High-precision measurement of the distance between the mass center and the optical center of falling body based on the pendulum system[J]. Chinese Journal of Scientific Instrument,2022,43(8):85-92. [14] 倪庆乐,王雨时,闻泉,等. 基于三维造型的复杂形状零部件质心位置测量[J]. 兵器装备工程学报,2016,37(4):66-68. NI Qingle,WANG Yushi,WEN Quan,et al. Measurement of centroid position for parts with complex shape based on three-dimensional modeling techniques[J]. Journal of Ordnance Equipment Engineering,2016,37(4):66-68. [15] 郭亚内. 多轴车辆质心测量方法分析[J]. 黑龙江科学,2019,10(14):70-71. GUO Yanei. Analysis of centroid measurement method for multi-axle vehicles[J]. Heilongjiang Science,2019,10(14):70-71. [16] 赵传松,任红格,史涛,等. 内在动机轮式倒立摆反应式认知系统[J]. 浙江大学学报,2018,52(6):1073-1080. ZHAO Chuansong,REN Hongge,SHI Tao,et al. Wheeled inverted pendulum reactive cognitive system with internal motivation[J]. Journal of Zhejiang University,2018,52(6):1073-1080. [17] QURESHI A H,NAKAMURA Y,YOSHIKAWA Y,et al. Intrinsically motivated reinforcement learning for human–robot interaction in the real-world[J]. Neural Networks,2018(107):170-186. [18] 阮晓钢,张家辉,黄静,等. 一种结合内在动机理论的移动机器人环境认知模型[J]. 控制与决策,2021, 36(9):2211-2217. RUAN Xiaogang,ZHANG Jiahui,HUANG Jing,et al. An environment cognition model combined with intrinsic motivation for mobile robots[J]. Control and Decision,2021,36(9):2211-2217. [19] KOOIJMAN J,SCHWAD A L,MEIJAARD J P. Experimental validation of a model of an uncontrolled bicycle[J]. Multibody System Dynamics,2008,19(1/2):115-132.