Toughening Mechanism of TC21 Titanium Alloy Linear Friction Welded Joints
ZHAO Pengkang1,2, HONG Zhenyu1, ZHANG Min3, XIAO Xudong1, YUAN Qilong1, TAO Jun4, ANTUNES Elsa5, MA Ningshu2
1. Key Lab. of CNC Machine Tool and Machinery Manufacturing Equipment Integration of the Ministry of Education, Xi'an University of Technology, Xi'an 710048; 2. Joining and Welding Research Institute (JWRI), Osaka University, Osaka 567-0047, Japan; 3. School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048; 4. Aeronautical Key Laboratory for Welding and Joining Technologies, AVIC Manufacturing Technology Institute, Beijing 100024; 5. College of Science and Engineering, James Cook University, Townsville 4811, Australia
[1] BU Huanxian,Huang Xun,Zhang Xin. An overview of testing methods for aeroengine fan noise[J]. Progress in Aerospace Sciences,2021,124:100722. [2] 朱知寿,王新南,童路,等. 航空用损伤容限型钛合金研究与应用[J]. 中国材料进展,2010,29(5):14-17. Zhu Zhishou,Wang Xinnan,Tong Lu,et al. Research and application of damage tolerance titanium alloys for aeronautical use [J]. Materials China,2010,29(5):14-17. [3] 马铁军,刘亚森,李文亚,等. 线性摩擦焊AA5083铝合金/T2纯铜异质接头特征研究[J]. 机械工程学报,2017,53(4):11-17. MA Tiejun,Liu Yasen,LI Wenya,et al. Characteristics of linear friction welded AA5083 aluminum alloy-T2 pure copper dissimilar joint[J]. Journal of Mechanical Engineering,2017,53(4):11-17. [4] 李亚江,刘坤. 钛合金在航空领域的应用及其先进连接技术[J]. 航空制造技术,2015(16):34-37. LI Yajiang,Liu Kun. Application and advanced bonding technology of titanium alloy in aviation industry[J]. Aeronautical Manufacturing Technology,2015(16):34-37. [5] Zhao Pengkang,HU Yingxin,Geng Peihao,et al. Effective toughening of dissimilar Ti alloy friction welded joint by combining electropulsing thermal and athermal effects[J]. Materials Science and Engineering:A,2024,909:146864. [6] LI Wenya,Vairis A,Preuss M,et al. Linear and rotary friction welding review[J]. International Materials Reviews,2016,61(2):71-100. [7] Choi J W,Aoki Y,Ushioda K,et al. Linear friction welding of Ti-6Al-4V alloy fabricated below β-phase transformation temperature[J]. Scripta Materialia,2021,191:12-16. [8] 杜随更,刘冠翔,陈虎,等. TC17(α+β)/TC17(β)线性摩擦焊接过程中焊合区组织及其织构演变[J]. 机械工程学报,2024,60(2):99-106. DU Suigeng,Liu Guanxiang,Chen Hu,et al. Microstructure and texture evolution of the weld zone during Linear Friction Welding between TC17(α+β) and TC17(β)[J]. Journal of Mechanical Engineering,2024,60(2):99-106. [9] 常川川,李菊,李晓红. 钛合金线性摩擦焊接头焊接缺陷分析[J]. 稀有金属材料与工程,2021,50(10):3771-3776. Chang Chuanchuan,LI Ju,LI Xiaohong. Analysis of typical welding defects of titanium alloy linear friction welding joint [J]. Rare Metal Materials and Engineering,2021,50(10):3771-3776. [10] Yang Jun,LI Jinglong,Xiong Jiangtao,et al. Effect of welding parameters on microstructure characteristics and fatigue properties of dissimilar joints prepared by linear friction welding on TC11 and TC17 titanium alloys[J]. Weld World,2020,64(4):683-695. [11] Zhao Pengkang,Wei Chen,LI Yan,et al. Effect of heat treatment on the microstructure,microhardness and impact toughness of TC11 and TC17 linear friction welded joint[J]. Materials Science and Engineering:A,2021,803:140496. [12] 金俊龙,李菊,张传臣,等. 热处理对TC21钛合金线性摩擦焊接头组织与性能的影响[J]. 焊接学报,2022,43(9):69-74,117. Jin Junlong,LI Ju,Zhang Chuanchen,et al. Effect of heat treatment on microstructure and properties of TC21 titanium alloy linear friction welded joint[J]. Journal of Welding Technology,2022,43(9):69-74,117. [13] 常川川,李菊,崔洋,等. TC21钛合金线性摩擦焊接头组织及性能分析[J]. 稀有金属材料与工程,2022,51(10):3843-3849. Chang Chuanchuan,LI Ju,Cui Yang,et al. Microstructure and properties analysis of TC21 titanium alloy linear friction welding joint[J]. Rare Metal Materials and Engineering,2022,51(10):3843-3849. [14] 刘颖,张传臣,张田仓. TC4-DT钛合金线性摩擦焊接头组织和力学性能分析[J]. 航空制造技术,2017(22):83-86. Liu Ying,Zhang Chuanchen,Zhang Tiancang. Microstructure and mechanical properties of LFW joint for TC4-DT titanium alloy[J]. Aeronautical Manufacturing Technology,2017(22):83-86. [15] 张传臣,张田仓,金俊龙. TC21+TC4-DT线性摩擦焊接头组织与力学性能试验[J]. 焊接学报,2019,40(12):133-137,167. Zhang Chuanchen,Zhang Tiancang,Jin Junlong. Microstructure and mechanical properties test of TC21+TC4-DT linear friction welding joint[J]. Transactions of the China Welding Institution,2019,40(12):133-137,167. [16] 杜随更,徐婉婷,高漫. TC17-TC11异种钛合金线性摩擦焊接头弯曲性能分析与改善[J]. 机械工程学报,2021,57(24):200-210. DU Suigeng,XU Wanting,Gao Man. Bending property analysis and improvement of TC17-TC11 dissimilar titanium alloy linear friction welding joint[J]. Journal of Mechanical Engineering,2021,57(24):200-210. [17] Guo Yina,Attallah M M,ChiuY,et al. Spatial variation of microtexture in linear friction welded Ti-6Al-4V[J]. Materials Characterization,2017,127:342-347. [18] Karadge M,Preuss M,Lovell C,et al. Texture development in Ti-6Al-4V linear friction welds[J]. Materials Science and Engineering:A,2007,459(1-2):182-191. [19] Zhao Pengkang,Tao Yifan,Chen Haiyan,et al. Texture characteristics and fracture mechanism of linear friction welded joints of dissimilar titanium alloys after annealing[J]. Materials Science and Engineering:A,2023,866:144709. [20] 常川川,李菊,李晓红,等. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报,2024,38(8):185-189. Chang Chuanchuan,LI Ju,LI Xiaohong,et al. Effect of heat treatment on linear friction welding joints of TC17 titanium alloys with dissimilar microstructures[J]. Materials Reports,2024,38(8):185-189. [21] Mcandrew A R,Colegrove P A,Bühr C,et al. A literature review of Ti-6Al-4V linear friction welding[J]. Progress in Materials Science,2018,92:225-257. [22] Zhao Pengkang,FU Li,Zhong Dechao. Numerical simulation of transient temperature and axial deformation during linear friction welding between TC11 and TC17 titanium alloys[J]. Computational Materials Science,2014,92:325-333. [23] 刘庆瑔. 航空发动机钛合金叶片制造技术及失效分析[M]. 北京:航空工业出版社,2018. Liu Qingquan. Manufacturing technology and failure analysis of titanium alloy blades for aeroengines[M]. Beijing:Aviation Industry Press,2018. [24] Calcagnotto M,Ponge D,Demir E,et al. Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD[J]. Materials Science and Engineering:A,2010,527(10-11):2738-2746. [25] Zhao Pengkang,Wei Chen,Xiao Xudong,et al. Thermal deformation mechanism of TC11/TC17 linear friction welded joint during isothermal compression[J]. Materials Characterization,2021,178:111319. [26] Guo Zhenguo,MA Tiejun,Yang Xiawei,et al. Multi-scale analyses of phase transformation mechanisms and hardness in linear friction welded Ti17(α+β)/Ti17(β) dissimilar titanium alloy joint[J]. Chinese Journal of Aeronautics,2024,37(1):312-324. [27] Roy R,Topping M,Daymond M R. Evolution of in-plane strain fields onset of a plastically deforming crack in zirconium[J]. Acta Materialia,2024,263:119525. [28] Kumar P,Ramamurty U. Microstructural optimization through heat treatment for enhancing the fracture toughness and fatigue crack growth resistance of selective laser melted Ti 6Al 4V alloy[J]. Acta Materialia,2019,169:45-59. [29] LI Rui,Guan Lei,Feng Qiuyuan,et al. Effect of rolling process on microstructure and mechanical properties of TC4ELI titanium alloy with ultra-wide thickness plate[J]. Transactions of Materials and Heat Treatment,2020,41(1):39-43. [30] Zhu Langping,Pan Yu,Liu Yanjun,et al. Effects of microstructure characteristics on the tensile properties and fracture toughness of TA15 alloy fabricated by hot isostatic pressing[J]. Int. J. Miner. Metall. Mater.,2023,30(4):697-706. [31] MA Shaojun,WU Xueren,Liu Jianzhong,et al. Influence of microstructures on mechanical properties for TC21 titanium alloy[J]. Journal of Aeronautical Materials,2006,26(5):22-25. [32] Chen Chang,Qian Sanfeng,Liu Rui,et al. The microstructure and tensile properties of W/Ti multilayer composites prepared by spark plasma sintering[J]. Journal of Alloys and Compounds,2019,780:116-130. [33] Yang Ronggui,Zhao Fei,Liu Yuan,et al. Research on the microstructural evolution mechanism and impact toughness of Ti-17 alloy with an initial basket-weave microstructure[J]. Materials Today Communications,2022,31:103640.