1. School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao 266520; 2. Key Lab of Industrial Fluid Energy Conservation and Pollution Control of Ministry of Education, Qingdao University of Technology, Qingdao 266520
LIANG Qingchen, LIANG Peng, GUO Feng, JIANG Fulin, ZHANG Xiaohan, LI Shuyi. Influence of Supply Conditions on the Diffusion Characteristics of Small Quantity Secondary Lubricant[J]. Journal of Mechanical Engineering, 2025, 61(1): 274-289.
[1] 解忠良,焦见,杨康. 水润滑夹心轴承流-固耦合动力学特性研究[J]. 机械工程学报,2023,59(3):86-97. XIE Zhongliang,JIAO Jian,YANG Kang. Investigation on the fluid-structure interaction dynamic behaviors of water lubricated sandwich bearing[J]. Journal of Mechanical Engineering,2023,59(3):86-97. [2] 梁兴鑫,严新平,欧阳武,等. 弹支可倾瓦推力轴承弹性垫最佳偏心率的影响因素[J]. 机械工程学报,2020,56(1):91-99. LIANG Xingxin,YAN Xinping,OUYANG Wu,et al. Influencing factors of the optimum offset ratio of elastic cushions of elastically supported tilting pad thrust bearings[J]. Journal of Mechanical Engineering,2020,56(1):91-99. [3] DONG S,GUO Z,ZANG H,et al. Effect of silicon carbide particles on tribological properties of polytetrafluoroethylene water-lubricated bearing composites[J]. Journal of Materials Engineering and Performance,2023:1-15. [4] 王悦昶,刘莹,张高龙,等. 推力瓦热瞬态变形机理及抑制方法研究[J]. 机械工程学报,2020,56(21):22-28. WANG Yuechang,LIU Ying,ZHANG Gaolong,et al. Research on thermal transient deformation mechanism and suppression method of thrust pad[J]. Journal of Mechanical Engineering,2020,56(21):22-28. [5] 欧阳武,程启超,王磊,等. 偏载下水润滑尾轴承分布式动力学特性[J]. 交通运输工程学报,2019,19(2):92-100. OUYANG Wu,CHENG Qichao,WANG Lei,et al. Distributed dynamics characteristics of water-lubricated stern bearing under offset load[J]. Journal of Traffic and Transportation Engineering,2019,19(2):92-100. [6] LITWIN W. Influence of local bush wear on water lubricated sliding bearing load carrying capacity[J]. Tribology International,2016,103:352-358. [7] MOKHTAR M O A,HPWARTH R B,DAVIES P B. Wear characteristics of plain hydrodynamic journal bearings during repeated starting and stopping[J]. ASLE Transactions,1977,20(3):191-194. [8] MUSCARI R,DUBBIOSO G,ORTOLANI F,et al. CFD analysis of the sensitivity of propeller bearing loads to stern appendages and propulsive configurations[J]. Applied Ocean Research,2017,69:205-219. [9] LIANG P,LI X,GUO F,et al. Influence of sea wave shock on transient start-up performance of water-lubricated bearing[J]. Tribology International,2022,167:107332. [10] 董宁. 水润滑飞龙滑动轴承弹流润滑性能分析[D]. 青岛:青岛理工大学,2015. DONG Ning. Elastohydrodynamic lubrication performance analysis of water-lubricated tenmat journal bearing[D]. Qingdao:Qingdao University of Technology,2015. [11] 马艳艳,李桂国. 动载滑动轴承润滑设计计算的研究进展[J]. 润滑与密封,2003(4):96-98. MA Yanyan,LI Guiguo. Lubrication design of dynamically loaded journal bearing[J]. Lubrication Engineering,2003(4):96-98. [12] 劳坤胜,金勇,刘灿波. 水润滑橡胶艉轴承参数对其抗冲击响应性能的影响[J]. 润滑与密封,2017,42(8):97-99,91. LAO Kunsheng,JIN Yong,LIU Canbo. Influence of water lubricated rubber stern bearing parameters on its shock resistant response performance[J]. Lubrication Engineering,2017,42(8):97-99,91. [13] 谢奕浓,王优强,宋晓萍,等. 启动振动与海浪冲击耦合时变UHMWPE轴承润滑分析[J]. 振动与冲击,2019,38(24):144-149. XIE Yinong,WANG Youqiang,SONG Xiaoping,et al. Transient lubrication analysis of UHMWPE bearings during start-up with vibration and shock[J]. Journal of Vibration and Shock,2019,38(24):144-149. [14] WANG J L,ZHANG C,WANG Y L,et al. Preparation and experimental study of graphite material for water lubricated thrust bearing of nuclear main pump[C]//Materials Science Forum. Trans Tech Publications Ltd,2018,932:102-106. [15] ZHANG X,YU T,GUO F,et al. Analysis of the influence of small quantity secondary lubricant on water lubrication[J]. Tribology International,2021,159:106998. [16] YU T,GUO F,ZHANG X,et al. Water lubrication assisted by small-quantity silicone oil[J]. Tribology International,2022,173:107619. [17] 季浩,禹涛,张晓寒,等. 微量第二介质辅助水润滑的临界转速的研究[J]. 摩擦学学报,2023,43(3):274-282. JI Hao,YU Tao,ZHANG Xiaohan,et al. Critical speed of assisted water lubrication with small quantity secondary lubricant[J]. Tribology,2023,43(3):274-282. [18] 禹涛,张晓寒,郭峰,等. 微量第二润滑介质辅助的增强水润滑研究[J]. 摩擦学学报,2022,42(2):358-365. YU Tao,ZHANG Xiaohan,GUO Feng,et al. Enhancing water lubrication by secondary assistant lubricant in small quantity[J]. Tribology,2022,42(2):358-365. [19] 刘文哲,栗心明,杨萍,等. 定量定时供油方式下润滑剂分布及润滑状态试验观察[J]. 摩擦学学报,2023,43(5):506-516. LIU Wenzhe,LI Xinming,YANG Ping,et al. Lubricant distributions and lubrication state under regular and quantitative oil supply[J]. Tribology,2023,43(5):506-516. [20] HAN T,PARANJPE R S. A finite volume analysis of the thermohydrodynamic performance of finite journal bearings[J]. Journal of Tribology,1990,112(3):557-565. [21] 谢梦斌,朱汉华,张梦. 供水特性对水润滑橡胶轴承衬套的影响[J]. 船舶工程,2021,43(1):61-66,124. XIE Mengbin,ZHU Hanhua,ZHANG Meng. Influence of water supply characteristics on bushing of water lubricated rubber bearing[J]. Ship Engineering,2021,43(1):61-66,124. [22] COSTA L,MIRANDA A S,FILLON M,et al. An analysis of the influence of oil supply conditions on the thermohydrodynamic performance of a single-groove journal bearing[J]. Proceedings of the Institution of Mechanical Engineers,Part J:Journal of Engineering Tribology,2003,217(2):133-144. [23] LIU G,LI M. Experimental study on the lubrication characteristics of water-lubricated rubber bearings at high rotating speeds[J]. Tribology International,2021,157:106868. [24] ZHAO Z,ZHANG R. Theoretical and experimental analysis of a water-lubricated rubber journal bearing with a large aspect ratio[J]. Industrial Lubrication and Tribology,2020,72(6):797-803. [25] PATIR N,CHENG H S. Application of average flow model to lubrication between rough sliding surfaces[J]. J. of Lubrication Tech.,1979, 101(2): 220-229. [26] PATIR N,CHENG H S. An average flow model for determining effects of three-dimensional roughness on partial hydrodynamic lubrication[J]. Journal of Lubrication Technology,1978,100:12-17. [27] HE T,ZOU D,LU X,et al. Mixed-lubrication analysis of marine stern tube bearing considering bending deformation of stern shaft and cavitation[J]. Tribology International,2014,73:108-116. [28] WU C,ZHENG L. An average Reynolds equation for partial film lubrication with a contact factor[J]. Journal of Tribology,1989,111(1):188-191. [29] DU Y,LAN J,QUAN H,et al. Effect of different turbulent lubrication models on the lubrication characteristics of water-lubricated rubber bearings at a high Reynolds number[J]. Physics of Fluids,2021,33(6):065118. [30] ATWAL J C,PANDEY R K. Performance analysis of thrust pad bearing using micro-rectangular pocket and bionic texture[J]. Proceedings of the Institution of Mechanical Engineers,Part J:Journal of Engineering Tribology,2021,235(6):1232-1250. [31] NG C W,PAN C H T. A linearized turbulent lubrication theory[J]. Journal of Basic Engineering,1965,87(3):675-682. [32] 温诗铸,黄平,田煜,等. 摩擦学原理[M]. 北京:清华大学出版社,2018. WEN Shizhu,HUANG Ping,TIAN Yu,et al. Principles of tribology[M]. Beijing:Tsinghua University Press,2018. [33] XIE Z,SONG P,HAO L,et al. Investigation on effects of Fluid-Structure-Interaction (FSI) on the lubrication performances of water lubricated bearing in primary circuit loop system of nuclear power plant[J]. Annals of Nuclear Energy,2020,141:107355. [34] KUZNETSOV E,GLAVATSKIH S. Dynamic characteristics of compliant journal bearings considering thermal effects[J]. Tribology International,2016,94:288-305. [35] CHETTI B,ZOUGGAR H. Steady-state performance of a circular journal bearing lubricated with a non-Newtonian fluid considering the elastic deformation of the liner[J]. Proceedings of the Institution of Mechanical Engineers,Part J:Journal of Engineering Tribology,2019,233(9):1389-1396. [36] 曹玉哲,梁鹏,郭峰,等. 不同工况下表面粗糙度对水润滑轴承启动性能的影响[J]. 推进技术,2022,43(7):457-469. CAO Yuzhe,LIANG Peng,GUO Feng,et al. Effects of surface roughness on transient performance of water lubricated bearings during start-up under different working conditions[J]. Journal of Propulsion Technology,2022,43(7):457-469. [37] GREENWOOD J A,TRIPP J H. The contact of two nominally flat rough surfaces[J]. Proceedings of the Institution of Mechanical Engineers,Part J:Journal of Engineering Tribology,1970,185(1970):625-634. [38] GREENWOOD J A,WILLIAMSON J B P. Contact of nominally flat surfaces[J]. Proceedings of the royal society of London. Series A. Mathematical and physical sciences,1966,295(1442):300-319. [39] SHI F,WANG Q. A mixed-TEHD model for journal-bearing conformal contacts-part I:Model formulation and approximation of heat transfer considering asperity contact[J]. Journal of Tribology,1998,120(2):198-205. [40] UBBINK O,ISSA R I. A method for capturing sharp fluid interfaces on arbitrary meshes[J]. Journal of Computational Physics,1999,153(1):26-50. [41] LEONARD B P. The ULTIMATE conservative difference scheme applied to unsteady one-dimensional convection[J]. Computer Methods in Applied Mechanics and Engineering,1991,88(1):17-74. [42] ZHANG X,SUDHARSAN N M,AJAYKUMAR R,et al. Simulation of free-surface flow in a tank using the Navier-Stokes model and unstructured finite volume method[J]. Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science,2005,219(3):251-266. [43] MUZAFERIJA S,PERIx C M. Computation of free-surface flows using the finite-volume method and moving grids[J]. Numerical Heat Transfer,1997,32(4):369-384. [44] HEYNS J A,MALAN A G,HARMS T M,et al. Development of a compressive surface capturing formulation for modelling free-surface flow by using the volume-of-fluid approach[J]. International Journal for Numerical Methods in Fluids,2013,71(6):788-804. [45] HEYNS J,MALAN A,HARMS T. Free-surface modelling technology for compressible and violent flows[C]//20th AIAA Computational Fluid Dynamics Conference. 2011:3828. [46] REN X,MIZUTANI N. Development of numerical circular wave basin and investigation of tsunami-structure interaction[D]. Nagoya:Nagoya University,2013. [47] 汪盛通,欧阳武,金勇,等. 考虑弹性变形的水润滑波纹轴承静态特性分析[J]. 船舶力学,2020,24(11):1443-1452. WANG Shengtong,OUYANG Wu,JIN Yong,et al. Analysis of static characteristics of wave bearings considering elastic deformation[J]. Journal of Ship Mechanics,2020,24(11):1443-1452. [48] CUI S,GU L,WANG L,et al. Numerical analysis on the dynamic contact behavior of hydrodynamic journal bearings during start-up[J]. Tribology International,2018,121:260-268. [49] II S,SUGIYAMA K,TAKEUCHI S,et al. An interface capturing method with a continuous function: The THINC method with multi-dimensional reconstruction[J]. Journal of Computational Physics,2012,231(5):2328-2358. [50] DANIEL G B,MACHADO T H,CAVALCA K L. Investigation on the influence of the cavitation boundaries on the dynamic behavior of planar mechanical systems with hydrodynamic bearings[J]. Mechanism and Machine Theory,2016,99:19-36. [51] Renewable Lubricants. Bio-synxtra stern tube lubes[EB/OL]. [2023-07-23]. https://en.rlicn.com/marine. [52] 杨沛然. 流体润滑数值分析[M]. 北京:国防工业出版社,1998. YANG Peiran. Numerical analysis of fluid lubrication[M]. Beijing:National Defense Industry Press,1998. [53] BRZEK B,CHAO D,TURAN Ö,et al. Characterizing developing adverse pressure gradient flows subject to surface roughness[J]. Experiments in Fluids,2010,48:663-677. [54] 张程宾,陈永平,施明恒,等. 表面粗糙度的分形特征及其对微通道内层流流动的影响[J]. 物理学报,2009,58(10):7050-7056. ZHANG Chengbin,CHEN Yongping,SHI Mingheng,et al. Fractal characteristics of surface roughness and its effect on laminar flow in microchannels[J]. Acta Physica Sinica,2009,58(10):7050-7056. [55] 杨利涛. 低速重载水润滑橡胶轴承润滑特性与试验研究[D]. 汉中:陕西理工大学,2021. YANG Litao. Research on lubrication characteristic and experiment of water-lubricated rubber bearing with low speed and heavy load [D]. Hanzhong:Shaanxi University of Technology,2021. [56] ZHOU G,QIAO J,PU W,et al. Analysis of mixed lubrication performance of water-lubricated rubber tilting pad journal bearing[J]. Tribology International,2022,169:107423.