[1] 李永兵, 马运五, 楼铭, 等.轻量化薄壁结构点连接技术研究进展[J].机械工程学报, 2020, 56(6):125-146. LI Yongbing, MA Yunwu, LOU Ming, et al. Advances in spot joining technologies of lightweight thin-walled structures[J]. Journal of Mechanical Engineering, 2020, 56(6):125-146. [2] 荣海, 盈亮, 胡平, 等.基于连续介质损伤力学的7075铝合金高温成形极限理论预测与数值仿真[J].机械工程学报, 2020, 56(24):51-60. RONG Hai, YING Liang, HU Ping, et al. Theoretical prediction and numerical simulation investigation of the thermal forming limit of 7075 aluminum alloy based on continuum damage mechanics[J]. Journal of Mechanical Engineering, 2020, 56(24):51-60. [3] YOGANJANEYULU G, ANAND B K, VENKATA S G, et al. Microstructure and mechanical properties of Al-6Zn-3Mg-2Cu-0.5Sc alloy[J]. Materials Letters, 2019, 253:18-21. [4] SHI C, CHEN X G. Evolution of activation energies for hot deformation of 7150 aluminum alloys with various Zr and V additions[J]. Materials Science and Engineering:A, 2016, 650:197-209. [5] LIN J G, DEAN T A, GARRETT R P, et al. Process for forming metal alloy sheet components:International Patent, WO2008/059242 A2[P]. 2008-05-22. [6] OMER K, BUTCHER C, WORSWICK M. Characterization and application of a constitutive model for two 7000-series aluminum alloys subjected to hot forming[J]. International Journal of Mechanical Sciences, 2020, 165:105218. [7] XIAO W, WANG B, WU Y, et al. Constitutive modeling of flow behavior and microstructure evolution of AA7075 in hot tensile deformation[J]. Materials Science and Engineering:A, 2018, 712:704-713. [8] WANG N, ANDREY L, CHEN M, et al. Comparative study on constitutive models for flow behavior of high strength aluminum alloy AA7075 in hot stamping[J]. Rare Metal Materials and Engineering, 2020, 49(1):10-20. [9] ZHU Z J, ZHU B, WANG K, et al. Investigation of the constitutive model for warm stamping of 7075-T6 aluminum alloy sheet[C]//Proceedings of the 4th International Conference on Advanced High Strength Steel and Press Hardening, August 20-22, 2018, Hefei, China. New Jersey:World Scientific, 2018:92-98. [10] LIN J, BAO X, HOU Y, et al. Investigation on yield behavior of 7075-T6 aluminum alloy at elevated temperatures[J]. Chinese Journal of Mechanical Engineering, 2020, 33:76. [11] MOHAMED M S, FOSTER A D, LIN J, et al. Investigation of deformation and failure features in hot stamping of AA6082:Experimentation and modelling[J]. International Journal of Machine Tools and Manufacture, 2012, 53(1):27-38. [12] 傅垒, 王宝雨, 林建国, 等.耦合位错密度的6111铝合金热变形本构模型[J].北京科技大学学报, 2013, 35(10):1333-1339. FU Lei, WANG Baoyu, LIN Jianguo, et al. Constitutive model coupled with dislocation density for hot deformation of 6111 aluminum alloy[J]. Journal of University of Science and Technology Beijing, 2013, 35(10):1333-1339. [13] 安剑, 李永丰, 张云光, 等.热冲压条件下2219铝合金的本构行为测试与建模[J].机械工程学报, 2021, 57(4):44-52. AN Jian, LI Yongfeng, ZHANG Yunguang, et al. Constitutive behavior of 2219 aluminum alloy under hot stamping condition[J]. Journal of Mechanical Engineering, 2021, 57(4):44-52. [14] LI N, SHAO Z T, LIN J G, et al. Investigation of uniaxial tensile properties of AA6082 under HFQ® conditions[J]. Key Engineering Materials, 2016, 716:337-344. [15] HU H E, ZHEN L, ZHANG B Y, et al. Microstructure characterization of 7050 aluminum alloy during dynamic recrystallization and dynamic recovery[J]. Materials Characterization, 2008, 59(9):1185-1189. [16] SAKAI T, BELYAKOV A, KAIBYSHEV R, et al. Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions[J]. Progress in Materials Science, 2014, 60:130-207. [17] LEI C, WANG Q, TANG H, et al. Hot deformation constitutive model and processing maps of homogenized Al-5Mg-3Zn-1Cu alloy[J]. Journal of Materials Research and Technology, 2021, 14:324-339. [18] 詹梅, 董赟达, 翟卓蕾, 等.塑性成形快速数值仿真方法的研究进展[J].机械工程学报, 2022, 58(16):2-20. ZHAN Mei, DONG Binda, ZHAI Zhuolei, et al. Research progress of rapid numerical simulation methods for plastic forming[J]. Journal of Mechanical Engineering, 2022, 58(16):2-20. [19] 韩建超, 姚昊明, 贾燚, 等.新型三相TiAl合金高温塑性变形行为及流动软化研究[J].机械工程学报, 2022, 58(16):77-88. HAN Jianchao, YAO Haoming, JIA Yi, et al. Study on high temperature plastic deformation behavior and flow softening of a new three-phase TiAl alloy[J]. Journal of Mechanical Engineering, 2022, 58(16):77-88. [20] ZENER C, HOLLOMON J H. Effect of strain rate upon plastic flow of steel[J]. Journal of Applied Physics, 1944, 15(1):22-32. [21] MANDAL S, RAKESH V, SIVAPRASAD P V, et al. Constitutive equations to predict high temperature flow stress in a Ti-modified austenitic stainless steel[J]. Materials Science and Engineering:A, 2009, 500(1-2):114-121. [22] GHIOTTI A, SIMONETTO E, BRUSCHI S. Influence of process parameters on tribological behaviour of AA7075 in hot stamping[J]. Wear, 2019, 426-427:348-356. |