[1] XU J,WANG X,WANG C,et al. A review on micro/nanoforming to fabricate 3D metallic structures[J]. Adv. Mater.,2021,33(6):e2000893. [2] 张苏鹏,王军丽,章震威,等. 等通道转角挤压制备超细晶材料的最新研究进展[J]. 材料热处理学报,2020,41(3):1-14. ZHANG Supeng, WANG Junli, ZHANG Zhenwei,et al. Latest research progress in the preparation of ultra-fine grain materials by equal channel angular pressing[J]. Transactions of Materials and Heat Treatment,2020,41(3):1-14. [3] 陈文杰. ECAP工艺对6061铝合金性能的影响[D].南京:南京航空航天大学,2011. CHEN Wenjie. Effect of equal channel angular pressing on properties of 6061 Al[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2011. [4] 薛克敏,薄冬青,王薄笑天,等. 7A60铝合金ECAP过程第二相演化行为及机理[J]. 材料导报,2018,32(9):3195-3198,3212. XUE Kemin,BO Dongqing,WANG Boxiaotian,et al. Evolution behavior and mechanism of equal channel angular pressing on the second phase of rolled 7A60 aluminum alloy[J]. Materials Reports,2018,32(9):3195-3198,3212. [5] 李文博. 等径角挤压汽车用高强铝合金的组织和性能[J]. 热加工工艺,2018,47(21):169-170,175. LI Wenbo. Microstructure and properties of high strength aluminum alloy for automobile by equal channel angular pressing[J]. Hot Working Technology 2018,47(21):169-170,175. [6] 王薄笑天,薛克敏,严思梁,等. 高能缺陷和第二相对新型超高强铝合金腐蚀行为的影响[J]. 中国有色金属学报,2019,29(4):693-699. WANG Boxiaotian,XUE Kemin,YAN Siliang,et al. Corrosion behavior of a new ultra high strength aluminum alloy due to high energy defects and secondary phases[J]. The Chinese Journal of Nonferrous Metals,2019,29(4):693-699. [7] 王斌. 纯铜等通道转角挤压模具设计及数值模拟研究[D]. 青岛:青岛理工大学,2018. WANG bin. Study on die design and numerical simulation of pure copper equal channel angular pressing[D]. Qingdao:Qingdao University of Technology,2018. [8] 郭廷彪,李琦,王晨,等. 低温等通道转角挤压中定向凝固纯铜的组织及性能演变[J]. 材料导报,2018,32(10):1650-1654,1687. GUO Tingbiao,LI Qi,WANG Chen,et al. The evolution of microstructure and properties of directional solidification pure copper during equal channel angular pressing at low temperature[J]. Materials Reports,2018,32(10):1650-1654,1687. [9] MOSTAED E,HASHEMPOUR M,FABRIZI A,et al. Microstructure,texture evolution,mechanical properties and corrosion behavior of ECAP processed ZK60 magnesium alloy for biodegradable applications[J]. Journal of the Mechanical Behavior of Biomedical Materials,2014,37:307-322. [10] PATIL A,BONTHA S,RAMESH M.R. Effect of ECAP on sliding wear behaviour of Mg-Zn-Gd-Zr alloy[J]. Materials Today:Proceedings,2020,20(Part 2):97-102. [11] AHMADI F,FARZIN M,MERATIAN M,et al. Improvement of ECAP process by imposing ultrasonic vibrations[J]. The International Journal of Advanced Manufacturing Technology,2015,79(1-4):503-512. [12] 陈晓强. 超声波辅助等径角挤压超细晶制备工艺及性能评估[D]. 深圳:深圳大学,2015. CHEN Xiaoqiang. Preparation technology and property evaluation of ultrafine crystal by ultrasonic assisted equal channel angular pressing[D]. Shenzhen:Shenzhen University,2015. [13] ZHILYAEV A P,SAMIGULLINA A A,MEDVEDEVA A E,et al. Softening and hardening of ECAP nickel under ultrasonic treatment[J]. Materials Science & Engineering A,2017,698:136-142. [14] BAGHERZADEH S,ABRINIA K,HAN Qingyou. Ultrasonic assisted equal channel angular extrusion (UAE) as a novel hybrid method for continuous production of ultra-fine grained metals[J]. Materials Letters,2016,169:90-94. [15] BAGHERZADEH S,ABRINIA K,HAN Qingyou. Analysis of plastic deformation behavior of ultrafine-grained aluminum processed by the newly developed ultrasonic vibration enhanced ECAP:Simulation and experiments[J]. Journal of Manufacturing Processes,2020,50:485-497. [16] HAN Guangchao,LI Kai,PENG Zhuo,et al. A new porous block sonotrode for ultrasonic assisted micro plastic forming[J]. International Journal of Advanced Manufacturing Technology,2017,89(5-8):2193-2202. [17] XU Linhong,LEI Yulan,ZHANG Haiou,et al. Research on the micro-extrusion process of copper T2 with different ultrasonic vibration modes[J]. Metals,2019,9(11),1209. [18] HAN Guangchao,WAN Weiqiang,ZHANG Zhaochen,et al. Experimental investigation into effects of different ultrasonic vibration modes in micro-extrusion process[J]. Journal of Manufacturing Processes,2021,67:427-437. https://doi.org/10.1016/j.jmapro.2021.05.007. |