Journal of Mechanical Engineering ›› 2021, Vol. 57 ›› Issue (22): 305-324.doi: 10.3901/JME.2021.22.305
Previous Articles Next Articles
TANG Yong1,2, BAI Shigen1,2, WU Yaopeng1,2, YUAN Wei1,2, WAN Zhenping1,2, XIE Yingxi1,2
Received:
2020-12-09
Revised:
2021-06-02
Online:
2021-11-20
Published:
2022-02-28
CLC Number:
TANG Yong, BAI Shigen, WU Yaopeng, YUAN Wei, WAN Zhenping, XIE Yingxi. Manufacturing Methods and Research Progress of High Voltage Micro-supercapacitors[J]. Journal of Mechanical Engineering, 2021, 57(22): 305-324.
[1] NAOI K, SIMON P. New materials and new configurations for advanced electrochemical capacitors[J]. Journal of The Electrochemical Society(JES), 2008, 17(1):34-37. [2] 汤勇, 刘辉龙, 陆龙生, 等. 激光加工平面型微超级电容器的研究进展与发展趋势[J]. 机械工程学报, 2019, 54(4):189-206. TANG Yong, LIU Huilong, LU Longsheng, et al. Research progress and perspective trend of laser-machined in-plane micro-supercapacitors[J]. Journal of Mechanical Engineering, 2019, 54(4):189-206. [3] SIMON P, GOGOTSI Y, DUNN B. Where do batteries end and supercapacitors begin?[J]. Science, 2014, 343(6176):1210-1211. [4] MATSUI H, TAKEDA Y, TOKITO S. Flexible and printed organic transistors:From materials to integrated circuits[J]. Organic Electronics, 2019, 75:105432. [5] JI Y, GAO T, WANG Z L, et al. Configuration design of Bi Fe O3 photovoltaic devices for self-powered electronic watch[J]. Nano Energy, 2019, 64:103909. [6] KIM K, JUNG M, KIM B, et al. Low-voltage, high-sensitivity and high-reliability bimodal sensor array with fully inkjet-printed flexible conducting electrode for low power consumption electronic skin[J]. Nano Energy, 2017, 41:301-307. [7] YANG Y, SONG Y, BO X, et al. A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat[J]. Nature Biotechnology, 2020, 38(2):217-224. [8] LI G, MO X, LAW W C, et al. 3D printed graphene/nickel electrodes for high areal capacitance electrochemical storage[J]. Journal of Materials Chemistry A, 2019, 7(8):4055-4062. [9] YADAV A, KHAIRE B R M. Overview of supercapacitor[J]. International Journal of Advanced Research in Computer Science and Software Engineering, 2013, 3(6):459-463. [10] IRO Z S, SUBRAMANI C, DASH S S. A brief review on electrode materials for supercapacitor[J]. Int. J. Electrochem. Sci., 2016, 11(12):10628-10643. [11] HALPER M S, ELLENBOGEN J C. Supercapacitors:Abrief overview[J]. The MITRE Corporation, Mc Lean, Virginia, USA, 2006:1-34. [12] SALANNE M, ROTENBERG B, NAOI K, et al. Efficient storage mechanisms for building better supercapacitors[J]. Nature Energy, 2016, 1(6):1-10. [13] CHOUDHARY N, LI C, MOORE J, et al. Asymmetric supercapacitor electrodes and devices[J]. Advanced Materials, 2017, 29(21):1605336. [14] HUANG Y, LI H, WANG Z, et al. Nanostructured polypyrrole as a flexible electrode material of supercapacitor[J]. Nano Energy, 2016, 22:422-438. [15] LARGEOT C, PORTET C, CHMIOLA J, et al. Relation between the ion size and pore size for an electric double-layer capacitor[J]. Journal of the American Chemical Society, 2008, 130(9):2730-2731. [16] AUGUSTYN V, COME J, LOWE M A, et al. High-rate electrochemical energy storage through Li+intercalation pseudocapacitance[J]. Nature Materials, 2013, 12(6):518-522. [17] MUZAFFAR A, AHAMED M B, DESHMUKH K, et al. A review on recent advances in hybrid supercapacitors:Design, fabrication and applications[J]. Renewable and Sustainable Energy Reviews, 2019, 101:123-145. [18] WU S, SAN H K, HUI K N. Carbon nanotube@manganese oxide nanosheet core-shell structure encapsulated within reduced graphene oxide film for flexible all-solid-state asymmetric supercapacitors[J]. Carbon, 2018, 132:776-784. [19] SHINDE P A, CHODANKAR N R, LEE S, et al. All-redox solid-state supercapacitor with cobalt manganese oxide@bimetallic hydroxides and vanadium nitride@nitrogen-doped carbon electrodes[J]. Chemical Engineering Journal, 2021, 405:127029. [20] LI T, WANG X, LIU P, et al. Synthesis of graphene/polyaniline copolymer for solid-state supercapacitor[J]. Journal of Electroanalytical Chemistry, 2020, 860:113908. [21] LO H J, HUANG M C, LAI Y H, et al. Towards bi-functional all-solid-state supercapacitor based on nickel hydroxide-reduced graphene oxide composite electrodes[J]. Materials Chemistry and Physics, 2021, 4(1):124306. [22] CAMPÉON B D L, YOSHIKAWA Y, TERANISHI T, et al. Sophisticated r GO synthesis and pre-lithiation unlocking full-cell lithium-ion battery high-rate performances[J]. Electrochimica Acta, 2020, 363:137257. [23] BÉGUIN, FRANOIS, PRESSER V, et al. Supercapacitors:Carbons and electrolytes for advanced supercapacitors[J]. Advanced Materials, 2014, 26(14):2283. [24] YU F, YE Z, CHEN W, et al. Plane tree bark-derived mesopore-dominant hierarchical carbon for high-voltage supercapacitors[J]. Applied Surface Science, 2020, 507:145190. [25] AL-RUBAYE S, RAJAGOPALAN R, DOU S X, et al. Facile synthesis of a reduced graphene oxide wrapped porous Ni Co2O4 composite with superior performance as an electrode material for supercapacitors[J]. Journal of Materials Chemistry A, 2017, 5(36):18989-18997. [26] HSU D J, CHI Y W, HUANG K P, et al. Electrochemical activation of vertically grown graphene nanowalls synthesized by plasma-enhanced chemical vapor deposition for high-voltage supercapacitors[J]. Electrochimica Acta, 2019, 300:324-332. [27] IZADI-NAJAFABADI A, YASUDA S, KOBASHI K, et al. Extracting the full potential of single-walled carbon nanotubes as durable supercapacitor electrodes operable at 4V with high power and energy density[J]. Advanced Materials, 2010, 22(35):235-241. [28] NOMURA K, NISHIHARA H, KOBAYASHI N, et al. 4. 4 V supercapacitors based on super-stable mesoporous carbon sheet made of edge-free graphene walls[J]. Energy&Environmental Science, 2019, 12(5):1542-1549. [29] ELKADY M F, KANER R B. Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage[J]. Nature Communications, 2013, 4(1):1475. [30] SAYYED S G, MAHADIK M A, SHAIKH A V, et al. Nano-metal oxide based supercapacitor via electrochemical deposition[J]. ES Energy&Environment, 2019, 3(4):25-44. [31] WANG X, WAN F, ZHANG L, et al. Large-area reduced graphene oxide composite films for flexible asymmetric sandwich and microsized supercapacitors[J]. Advanced Functional Materials, 2018, 28(18):1707247. [32] PAN Z, ZHONG J, ZHANG Q, et al. Ultrafast all-solid-state coaxial asymmetric fiber supercapacitors with a high volumetric energy density[J]. Advanced Energy Materials, 2018, 8(14):1702946. [33] ŚLIWAK A, GRYGLEWICZ G. High-voltage asymmetric supercapacitors based on carbon and manganese oxide/oxidized carbon nanofiber composite electrodes[J]. Energy Technology, 2014, 2(9-10):819-824. [34] DENG M J, YEH L H, LIN Y H, et al. 3D network V2O5electrodes in a gel electrolyte for high-voltage wearable symmetric pseudocapacitors[J]. ACS Applied Materials&Interfaces, 2019, 11(33):29838-29848. [35] KINLEN P J, MBUGUA J, KIM Y G, et al. Supercapacitors using n and p-type conductive polymers exhibiting metallic conductivity[J]. ECS Transactions, 2010, 25(35):157. [36] NA R, LU N, LI L, et al. A robust conductive polymer network as a multi-functional binder and conductive additive for supercapacitors[J]. Chem Electro Chem, 2020, 7(14):3056-3064. [37] BI W, HUANG J, WANG M, et al. V2O5-conductive polymer nanocables with built-in local electric field derived from interfacial oxygen vacancies for high energy density supercapacitors[J]. Journal of Materials Chemistry A, 2019, 7(30):17966-17973. [38] WANG X, YANG C, JIN J, et al. High-performance stretchable supercapacitors based on intrinsically stretchable acrylate rubber/MWCNTs@conductive polymer composite electrodes[J]. Journal of Materials Chemistry A, 2018, 6(10):4432-4442. [39] KOU L, HUANG T, ZHENG B, et al. Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics[J]. Nature Communications, 2014, 5(1):1-10. [40] CAI S, HUANG T, CHEN H, et al. Wet-spinning of ternary synergistic coaxial fibers for high performance yarn supercapacitors[J]. Journal of Materials Chemistry A, 2017, 5(43):22489-22494. [41] MO M, CHEN C, GAO H, et al. Wet-spinning assembly of cellulose nanofibers reinforced graphene/polypyrrole microfibers for high performance fiber-shaped supercapacitors[J]. Electrochimica Acta, 2018, 269:11-20. [42] YUE L, WANG X, SUN T, et al. Ni-MOF coating Mo S2structures by hydrothermal intercalation as high-performance electrodes for asymmetric supercapacitors[J]. Chemical Engineering Journal, 2019, 375:121959. [43] YU D, GOH K, ZHANG Q, et al. Controlled functionalization of carbonaceous fibers for asymmetric solid-state micro-supercapacitors with high volumetric energy density[J]. Advanced Materials, 2014, 26(39):6790-6797. [44] YU D, GOH K, WANG H, et al. Scalable synthesis of hierarchically structured carbon nanotube-graphene fibres for capacitive energy storage[J]. Nature Nanotechnology, 2014, 9(7):555-562. [45] XU Z, ZHANG Z, YIN H, et al. Investigation on the role of different conductive polymers in supercapacitors based on a zinc sulfide/reduced graphene oxide/conductive polymer ternary composite electrode[J]. RSC Advances, 2020, 10(6):3122-3129. [46] YANG D, BOCK C. Laser reduced graphene for supercapacitor applications[J]. Journal of Power Sources, 2017, 337:73-81. [47] ELKADY M F, STRONG V, DUBIN S, et al. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors[J]. Science, 2012, 335(6074):1326-1330. [48] WAN Z, STREED E, LOBINO M, et al. Laser-reduced graphene:Synthesis, properties, and applications[J]. Advanced Materials and Technologies, 2018, 3(4):1-19. [49] YILBAS B S, YILBAS Z, SAMI M, et al. Thermal processes taking place in the bone during CO2 laser irradiation[J]. Optics and Laser Technology, 1996, 28(7):513-519. [50] LI X, CUI Y, QI M, et al. A 1000-Volt planar micro-supercapacitor by direct-write laser engraving of polymers[C]//2017 IEEE 30th International Conference on Micro Electro Mechanical Systems(MEMS). IEEE, 2017:821-824. [51] LI X, CAI W, TEH K S, et al. High-voltage flexible microsupercapacitors based on laser-induced graphene[J]. ACS Applied Materials&Interfaces, 2018, 10(31):26357-26364. [52] BAI S, TANG Y, WU Y, et al. High voltage microsupercapacitors fabricated and assembled by laser carving[J]. ACS Applied Materials&Interfaces, 2020, 12(40):45541-45548. [53] LI J, MISHUKOVA V, OSTLING M, et al. All-solid-state micro-supercapacitors based on inkjet printed graphene electrodes[J]. Applied Physics Letters, 2016, 109(12):123901. [54] SHAO Y, FU J H, CAO Z, et al. 3D crumpled ultra-thin1t Mo S2 for inkjet printing of Mg-ion asymmetric micro-supercapacitors[J]. ACS Nano, 2020, 14:7308-7318. [55] CHAE C, HAN J H, LEE S S, et al. A printable metallic current collector for all-printed high-voltage micro-supercapacitors:Instantaneous surface passivation by flash-light-sintering reaction[J]. Advanced Functional Materials, 2020:2000715. [56] CHOI H W, ZHOU T, SINGH M, et al. Recent developments and directions in printed nanomaterials[J]. Nanoscale, 2015, 7(8):3338-3355. [57] ONSES M S, SUTANTO E, FERREIRA P M, et al. Mechanisms, capabilities, and applications of high-resolution electrohydrodynamic jet printing[J]. Small, 2015, 11(34):4237-4266. [58] AN B W, KIM K, KIM M, et al. Direct printing of reduced graphene oxide on planar or highly curved surfaces with high resolutions using electrohydrodynamics[J]. Small, 2015, 11(19):2263-2268. [59] LEE K H, LEE S S, AHN D B, et al. Ultrahigh areal number density solid-state on-chip microsupercapacitors via electrohydrodynamic jet printing[J]. Science Advances, 2020, 6(10):1692. [60] WEI M, ZHANG F, WANG W, et al. 3D direct writing fabrication of electrodes for electrochemical storage devices[J]. Journal of Power Sources, 2017, 354:134-147. [61] SHEN K, DING J, YANG S. 3D printing quasi-solid-state asymmetric micro-supercapacitors with ultrahigh areal energy density[J]. Advanced Energy Materials, 2018, 8(20):1800408. [62] ZHU C, LIU T, QIAN F, et al. Supercapacitors based on three-dimensional hierarchical graphene aerogels with periodic macropores[J]. Nano Letters, 2016, 16(6):3448-3456. [63] LI X, LI H, FAN X, et al. 3D-printed stretchable micro-supercapacitor with remarkable areal performance[J]. Advanced Energy Materials, 2020, 10(14):1903794. [64] ZHAO J, ZHANG Y, HUANG Y, et al. 3D printing fiber electrodes for an all-fiber integrated electronic device via hybridization of an asymmetric supercapacitor and a temperature sensor[J]. Advanced Science, 2018, 5(11):1801114. [65] BELLANI S, PETRONI E, DEL R C A E, et al. Scalable production of graphene inks via wet-jet milling exfoliation for screen-printed micro-supercapacitors[J]. Advanced Functional Materials, 2019, 29(14):1807659. [66] ZHAO W, WEI L, FU Q, et al. High-performance, flexible, solid-state micro-supercapacitors based on printed asymmetric interdigital electrodes and bio-hydrogel for on-chip electronics[J]. Journal of Power Sources, 2019, 422:73-83. [67] HYUN W J, SECOR E B, HERSAM M C, et al. High-resolution patterning of graphene by screen printing with a silicon stencil for highly flexible printed electronics[J]. Advanced Materials, 2015, 27(1):109-115. [68] LIU L, TIAN Q, YAO W, et al. All-printed ultraflexible and stretchable asymmetric in-plane solid-state supercapacitors(ASCs) for wearable electronics[J]. Journal of Power Sources, 2018, 397:59-67. [69] WANG S, LIU N, YANG C, et al. Fully screen printed highly conductive electrodes on various flexible substrates for asymmetric supercapacitors[J]. RSCAdvances, 2015, 5(104):85799-85805. [70] SHI X, PEI S, ZHOU F, et al. Ultrahigh-voltage integrated micro-supercapacitors with designable shapes and superior flexibility[J]. Energy&Environmental Science, 2019, 12(5):1534-1541. [71] CHO S, KIM M, JANG J. Screen-printable and flexible Ru O2 nanoparticle-decorated PEDOT:PSS/graphene nanocomposite with enhanced electrical and electrochemical performances for high-capacity supercapacitor[J]. ACS Applied Materials&Interfaces, 2015, 7(19):10213-10227. [72] GAO Z, BUMGARDNER C, SONG N, et al. Cotton-textile-enabled flexible self-sustaining power packs via roll-to-roll fabrication[J]. Nature Communications, 2016, 7(1):1-12. [73] WU W. Inorganic nanomaterials for printed electronics:Areview[J]. Nanoscale, 2017, 9(22):7342-7372. [74] LEE H, HONG S, KWON J, et al. All-solid-state flexible supercapacitors by fast laser annealing of printed metal nanoparticle layers[J]. Journal of Materials Chemistry A, 2015, 3(16):8339-8345. [75] KANG S, LIM K, PARK H, et al. Roll-to-roll laser-printed graphene-graphitic carbon electrodes for high-performance supercapacitors[J]. ACS Applied Materials&Interfaces, 2018, 10(1):1033-1038. [76] LI H, GUO H, TONG S, et al. High-performance supercapacitor carbon electrode fabricated by large-scale roll-to-roll micro-gravure printing[J]. Journal of Physics D:Applied Physics, 2019, 52(11):115501. [77] KUMAR N, GINTING R T, OVHAL M, et al. All-solid-state flexible supercapacitor based on spray-printed polyester/pedot:PSS electrodes[J]. Molecular Crystals and Liquid Crystals, 2018, 660(1):135-142. [78] ZHENG S, TANG X, WU Z S, et al. Arbitrary-shaped graphene-based planar sandwich supercapacitors on one substrate with enhanced flexibility and integration[J]. ACS Nano, 2017, 11(2):2171-2179. [79] XIAO H, WU Z S, CHEN L, et al. One-step device fabrication of phosphorene and graphene interdigital micro-supercapacitors with high energy density[J]. ACSNano, 2017, 11(7):7284-7292. [80] WANG X, LU Q, CHEN C, et al. A consecutive spray printing strategy to construct and integrate diverse supercapacitors on various substrates[J]. ACS Applied Materials&Interfaces, 2017, 9(34):28612-28619. [81] KAMBOJ N, PURKAIT T, DAS M, et al. Ultralong cycle life and outstanding capacitive performance of a 10. 8 Vmetal free micro-supercapacitor with highly conducting and robust laser-irradiated graphene for an integrated storage device[J]. Energy&Environmental Science, 2019, 12(8):2507-2517. [82] LIN Y, GAO Y, FAN Z. Printable fabrication of nanocoral-structured electrodes for high-performance flexible and planar supercapacitor with artistic design[J]. Advanced Materials, 2017, 29(43):1701736. [83] HUANG H, HE J, WANG Z, et al. Scalable, and low-cost treating-cutting-coating manufacture platform for MXene-based on-chip micro-supercapacitors[J]. Nano Energy, 2020, 69:104431. [84] LI W, LUO T, YANG C, et al. Laser assisted self-assembly synthesis of porous hollow Mo O3-x-doped Mo S2 nanospheres sandwiched by graphene for flexible high-areal supercapacitors[J]. Electrochimica Acta, 2020, 332:135499. [85] KARAKAYA M, ZHU J, RAGHAVENDRA A J, et al. Roll-to-roll production of spray coated N-doped carbon nanotube electrodes for supercapacitors[J]. Applied Physics Letters, 2014, 105(26):263103. [86] HUANG Z, HAO Y, LI Y, et al. Three-dimensional integrated stretchable electronics[J]. Nature Electronics, 2018, 1(8):473-480. [87] XIONG Z, YUN X, QIU L, et al. A dynamic graphene oxide network enables spray printing of colloidal gels for high-performance micro-supercapacitors[J]. Advanced Materials, 2019, 31(16):1804434. [88] GUO R, CHEN J, YANG B, et al. In-plane micro-supercapacitors for an integrated device on one piece of paper[J]. Advanced Functional Materials, 2017, 27(43):1702394. [89] PARK S, LEE H, KIM Y J, et al. Fully laser-patterned stretchable microsupercapacitors integrated with soft electronic circuit components[J]. NPG Asia Materials, 2018, 10(10):959-969. [90] TIAN Z, TONG X, SHENG G, et al. Printable magnesium ion quasi-solid-state asymmetric supercapacitors for flexible solar-charging integrated units[J]. Nature Communications, 2019, 10(1):1-11. [91] JIANG Q, WU C, WANG Z, et al. MXene electrochemical microsupercapacitor integrated with triboelectric nanogenerator as a wearable self-charging power unit[J]. Nano Energy, 2018, 45:266-272. [92] PAN S, REN J, FANG X, et al. Integration:An effective strategy to develop multifunctional energy storage devices[J]. Advanced Energy Materials, 2016, 6(4):1501867. [93] BANASZ R, WAŁĘSA-CHORAB M. Polymeric complexes of transition metal ions as electrochromic materials:Synthesis and properties[J]. Coordination Chemistry Reviews, 2019, 389:1-18. [94] CAI G, DARMAWAN P, CHENG X, et al. Inkjet printed large area multifunctional smart windows[J]. Advanced Energy Materials, 2017, 7(14):1602598. [95] CHEN X, LIN H, DENG J, et al. Electrochromic fiber-shaped supercapacitors[J]. Advanced Materials, 2014, 26(48):8126-8132. [96] LUO Y, TANG Y, et al. Editable supercapacitors with customizable stretchability based on mechanically strengthened ultralong Mn O2 nanowire composite[J]. Advanced Materials, 2018, 30(2):1704531. [97] HUANG Y, ZHONG M, HUANG Y, et al. Aself-healable and highly stretchable supercapacitor based on a dual crosslinked polyelectrolyte[J]. Nature Communications, 2015, 6(1):1-8. [98] HARDY J G, PALMA M, WIND S J, et al. Responsive biomaterials:Advances in materials based on shape-memory polymers[J]. Advanced Materials, 2016, 28(27):5717-5724. [99] LIU L, SHEN B, JIANG D, et al. Watchband-like supercapacitors with body temperature inducible shape memory ability[J]. Advanced Energy Materials, 2016, 6(16):1600763. [100] RAMADOSS A, SARAVANAKUMAR B, LEE S W, et al. Piezoelectric-driven self-charging supercapacitor power cell[J]. ACS Nano, 2015, 9(4):4337-4345. |
[1] | YANG Xulai, YUAN Shuaishuai, YANG Wenjing, LIU Chuang, YANG Shichun. Research Progress on Energy Density of Li-ion Batteries for Evs [J]. Journal of Mechanical Engineering, 2023, 59(6): 239-254. |
[2] | CHEN Gong, TANG Yong, ZHANG Shiwei, ZHONG Guisheng, SUN Yalong, LI Jie. Development Status and Perspective Trend of Ultrathin Vapor Chamber [J]. Journal of Mechanical Engineering, 2022, 58(12): 197-212. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||