[1] YAN Xiaoan, JIA Minping, ZHANG Wan, et al. Fault diagnosis of rolling element bearing using a new optimal scale morphology analysis method[J]. Isa Transactions, 2018, 73:165-180. [2] JIA Feng, LEI Yaguo, GUO Liang, et al. A neural network constructed by deep learning technique and its application to intelligent fault diagnosis of machines[J]. Neurocomputing, 2018, 272(10):619-628. [3] LU Siliang, HE Qingbo, ZHAO Jiwen, et al. Bearing fault diagnosis of a permanent magnet synchronous motor via a fast and online order analysis method in an embedded system[J]. Mechanical Systems and Signal Processing, 2017, 113(12):36-49. [4] 张小龙, 张氢, 秦仙蓉, 等. 基于ITD-形态滤波和Teager能量谱的轴承故障诊断[J]. 仪器仪表学报, 2016, 37(4):788-795. ZHANG Xiaolong, ZHANG Qing, QIN Xianrong, et al. Fault diagnosis method for rolling bearing based on ITD-morphological filter and Teager energy spectrum[J]. Chinese Journal of Scientific Instrument, 2016, 37(4):788-795. [5] 李宏坤, 杨蕊, 任远杰, 等. 利用粒子滤波与谱峭度的滚动轴承故障诊断[J]. 机械工程学报, 2017, 53(3):63-72. LI Hongkun, YANG Rui, REN Yuanjie, et al. Rolling element bearing diagnosis using particle filter and kurtogram[J]. Journal of Mechanical Engineering, 2017, 53(3):63-72. [6] 李志农, 张芬, 何旭平. 基于小波-KCCA的非线性欠定盲分离方法研究[J]. 仪器仪表学报, 2014, 35(3):601-606. LI Zhinong, ZHANG Fen, HE Xuping. Study on underdetermined blind source separation method of nonlinear mixture based on wavelet and Kernel Canonical Correlation Analysis[J]. Chinese Journal of Scientific Instrument, 2014, 35(3):601-606. [7] MCCULLOCH W, PITTS W. A logical calculus of the ideas immanent in nervous activity[J]. Bulletin Mathematical Biology, 1943, 5(4):115-133. [8] SAMUEL A. Some studies in machine learning using the game of checkers. II:recent progress[J]. Ibm Journal of Research and Development, 1967, 11(6):601-617. [9] RUMELHART D, HINTON G, WILLIAMS R, et al. Learning representations by back-propagating errors[J]. Nature, 1988, 323(6088):696-699. [10] FISCHER A, IGEL C. An introduction to restricted Boltzmann machines[C]//Iberoamerican Congress on Pattern Recognition, 2012:14-36. [11] LÉCUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[C]//Proc. IEEE, 1998, 86(11):2278-2324. [12] 杨宇, 罗鹏, 甘磊, 等. SADBN及其在滚动轴承故障分类识别中的应用[J]. 振动与冲击, 2019, 38(15):11-16, 26. YANG Yu, LUO Peng, GAN Lei, et al. SADBN and its application in rolling bearing fault identification and classification[J]. Journal of Vibration and Shock, 2019, 38(15):11-16, 26. [13] 沈长青, 汤盛浩, 江星星, 等. 独立自适应学习率优化深度信念网络在轴承故障诊断中的应用研究[J]. 机械工程学报, 2019, 55(7):81-88. SHEN Changqing, TANG Shenghao, JIANG Xingxing, et al. Bearings fault diagnosis based on improved deep belief network by self-individual adaptive learning rate[J]. Journal of Mechanical Engineering, 2019, 55(7):81-88. [14] 赵光权, 葛强强, 刘小勇, 等. 基于DBN的故障特征提取及诊断方法研究[J]. 仪器仪表学报, 2016, 37(9):1946-1953. ZHAO Guangquan, GE Qiangqiang, LIU Xiaoyong, et al. Fault feature extraction and diagnosis method based on deep belief network[J]. Chinese Journal of Scientific Instrument, 2016, 37(9):1946-1953. [15] CHEN Zhiqiang, DENG Shengcai, CHEN Xudong, et al. Deep neural networks-based rolling bearing fault diagnosis[J]. Microelectronics Reliability, 2017, 75(75):327-333. [16] SHAO Haidong, JIANG Hongkai, WANG Fuan, et al. Rolling bearing fault diagnosis using adaptive deep belief network with dual-tree complex wavelet packet[J]. Isa Transactions, 2017, 69:187-201. [17] SHAO Haidong, JIANG Hongkai, ZHANG Haizhou, et al. Rolling bearing fault feature learning using improved convolutional deep belief network with compressed sensing[J]. Mechanical Systems and Signal Processing, 2018, 100:743-765. [18] 雷亚国, 杨彬, 杜兆钧, 等. 大数据下机械装备故障的深度迁移诊断方法[J]. 机械工程学报, 2019, 55(7):1-8. LEI Yaguo, YANG Bin, DU Zhaojun, et al. Deep transfer diagnosis method for machinery in big data era[J]. Journal of Mechanical Engineering, 2019, 55(7):1-8. [19] ZHANG Zhongwei, CHEN Huaihai, LI Shunming, et al. A novel geodesic flow kernel based domain adaptation approach for intelligent fault diagnosis under varying working condition[J]. Neurocomputing, 2020, 376:54-64. [20] LI Xiang, JIA Xiaodong, ZHANG Wei, et al. Intelligent cross-machine fault diagnosis approach with deep auto-encoder and domain adaptation[J]. Neurocomputing, 2020, 383:235-247. [21] AN Zenghui, LI Shunming, WANG Jinrui, et al. Generalization of deep neural network for bearing fault diagnosis under different working conditions using multiple kernel method[J]. Neurocomputing, 2019, 352:42-53. [22] TONG Zhe, LI Wei, ZHANG Bo, et al. Bearing fault diagnosis based on domain adaptation using transferable features under different working conditions[J]. Shock and Vibration, 2018, 2018(2018):1-12. [23] WANG Gongming, QIAO Junfei, LI Xiaoli, et al. Improved classification with semi-supervised deep belief network[J]. IFAC-Papers on Line, 2017, 50(1):4174-4179. [24] GRETTON A, BORGWARDT K, RASCH M, et al. A kernel method for the two-sample-problem[C]//Neural Information Processing Systems, 2006:513-520. [25] WANG Mei, DENG Weihong. Deep face recognition with clustering based domain adaptation[J]. Neurocomputing, 2020, 393:1-14. [26] QIN Yi, WANG Xin, ZOU Jingqiang. The optimized deep belief networks with improved logistic sigmoid units and their application in fault diagnosis for planetary gearboxes of wind turbines[J]. IEEE Transactions on Industrial Electronics, 2019, 66(5):3814-3824. [27] 张云强, 张培林, 王怀光, 等. 基于双时域微弱故障特征增强的轴承早期故障智能识别[J]. 机械工程学报, 2016, 52(21):96-103. ZHANG Yunqiang, ZHANG Peilin, WANG Huaiguang, et al. Rolling bearing early fault intelligence recognition based on weak fault feature enhancement in time-time domain[J]. Journal of Mechanical Engineering, 2016, 52(21):96-103. [28] LOPARO K. Bearing data center, case western reserve university[EB/OL]. 2013[2020-05-25]. http://www.eecs.case.edu/laboratory/bearing. [29] RANZATO M, BOUREAU Y, LECUN Y, et al. Sparse feature learning for deep belief networks[C]//Neural Information Processing Systems, 2007:1185-1192. [30] SALAKHUTDINOV R, HINTON G. Deep boltzmann machines[C]//International Conference on Artificial Intelligence and Statistics, 2009:448-455. [31] HINTON G, SALAKHUTDINOV R. Reducing the dimensionality of data with neural networks[J]. Science 2006, 313(5786):504-507. [32] HINTON G, OSINDERO S, TEH Y. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2014, 18(7):1527-1554. |