Journal of Mechanical Engineering ›› 2020, Vol. 56 ›› Issue (14): 26-43.doi: 10.3901/JME.2020.14.026
Previous Articles Next Articles
YANG Long, YANG Bing, YANG Guangwu, XIAO Shoune, ZHU Tao
Received:
2019-12-11
Revised:
2020-04-24
Online:
2020-07-20
Published:
2020-08-12
CLC Number:
YANG Long, YANG Bing, YANG Guangwu, XIAO Shoune, ZHU Tao. Overview of Fatigue Research of Spot Welded Joints[J]. Journal of Mechanical Engineering, 2020, 56(14): 26-43.
[1] 姚亚涛. 不锈钢点焊车体结构仿真关键技术研究[D]. 成都:西南交通大学, 2016. YAO Yatao. Research on key technologies for structural simulation of stainless steel spot welded car body[D]. Chengdu:Southwest Jiaotong University, 2016. [2] CHU Q, LI W Y, HOU H L, et al. On the double-side probeless friction stir spot welding of AA2198 Al-Li alloy[J]. Journal of Materials Science & Technology, 2019, 35(5):784-789. [3] CHANG B H, LI M V, ZHOU Y. Comparative study of small scale and ‘large scale’ resistance spot welding[J]. Science & Technology of Welding & Joining, 2001, 6(5):273-280. [4] ZHOU Y, REICHERT C, ELY K J. On ‘joining applications in electronics and medical devices’[C]//Edison Welding Institute, September 1998, Columbus, OH, 1998:79-90. [5] 王敏. 电阻焊在汽车工业中的应用[J]. 电焊机, 2003, 1(1):1-6. WANG Min. Application of resistance welding in automobile industry[J]. Electric Welding Machine, 2003, 1(1):1-6. [6] Resistance Welder Manufacturers' Association. Resistance welding manual[M]. 4th ed. Philadelphia:Resistance Welder Manufacturers' Association, 1989. [7] 宇慧平, 王伟伟, 李晓阳, 等. 超高强钢点焊结构拉剪试验及数值仿真[J]. 焊接学报, 2013, 34(10):9-12. YU Huiping, WANG Weiwei, LI Xiaoyang, et al. Tensile shear test and numerical simulation of spot welded structure of ultra high strength steel[J]. Journal of Welding, 2013, 34(10):9-12. [8] 张家菊, 张玉萍. 汽车车身电阻点焊焊点强度影响因素的分析[J]. 焊接技术, 1995, 1(5):8-11. ZHANG Jiaju, ZHANG Yuping. Analysis of the factors affecting the strength of welding spots of automotive body resistance spot welding[J]. Welding Technology, 1995, 1(5):8-11. [9] 王峰. 点、环焊接头等效应力方法研究[D]. 成都:西南交通大学, 2018. WANG Feng. Research on equivalent stress method of spot and girth welded joints[D]. Chengdu:Southwest Jiaotong University, 2018. [10] 袁少波, 童彦刚. 点焊技术在汽车工业中的应用[J]. 电焊机, 2005, 1(2):26-30. YUAN Shaobo, TONG Yangang. Application of spot welding technology in automobile industry[J]. Electric Welder, 2005, 1(2):26-30. [11] WU G H, LI D Y, SU X M, et al. Experiment and modeling on fatigue of the DP780GI spot welded joint[J]. International Journal of Fatigue, 2017, 103:73-85. [12] 王艳俊. 轻量化汽车车身铝合金的电阻点焊研究[D].南昌:南昌大学, 2017. WANG Yanjun. Research on resistance spot welding of lightweight automotive body aluminum alloy[D]. Nanchang:Nanchang University, 2017. [13] YAO Y X, SHI C Y. Fussy assessment of fatigue strength of spot-welded structures[J]. Advanced Materials Research, 2012, 562-564:2030-2033. [14] 王长征. 基于DRC法的电阻点焊协同控制[D]. 长春:吉林大学, 2004. WANG Changzheng. Cooperative control of resistance spot welding based on DRC method[D]. Changchun:Jilin University, 2004. [15] RADAJ D. 焊接结构疲劳强度[M]. 北京:机械工业出版社, 1994. RADAJ D. Fatigue strength of welded structures[M]. Beijing:China Machine Press, 1994. [16] 王瑞杰, 尚德广, 沈通, 等. 点焊接头疲劳寿命预测研究进展[J]. 力学与实践, 2006, 1(3):9-14. WANG Ruijie, SHANG Deguang, SHEN Tong, et al. Research progress on fatigue life prediction of spot welded joints[J]. Mechanics and Practice, 2006, 1(3):9-14. [17] RADAJ D, SONSION C M, FRICKE W. Fatigue assessment of welded joints by local approaches[M]. Cambridge:Woodhead Publishing Limited, 2006. [18] RADAJ D. Vollständige Bestimmung der Kräfte am Schweißpunkt[J]. Ing-Archiv, 1990, 60:389-398. RADAJ D. Complete determination of the forces at the welding point[J]. Ing-Archiv, 1990, 60:389-398. [19] RADAJ D. Theory of forces and stresses in spot-welded overlap joints[J]. Archive Appl. Mech., 1996, 67:2-34. [20] RADAJ D, ZHANG S. Anschauliche Grundlagen für Kräfte und Spannungen in punktgeschweißten Überlappver-bindungen[J]. Konstruktion, 1996, 48:65-71. RADAJ D, ZHANG S. Clear basics for forces and tensions in spot welded overlap connections[J]. Construction, 1996, 48:65-71. [21] RADAJ D, ZHANG S. Strukturspannungen am starren Kern in endlich berandeter Platte[J]. Konstruktion, 1996, 48:195-199. RADAJ D, ZHANG S. Structural stresses on the rigid core in a finally bordered plate[J]. Construction, 1996, 48:195-199. [22] RADAJ D, ZHANG S. Weld spot force evaluation with dented sheet material[J]. Engng. Fract. Mech., 1998, 61:673-678. [23] RADAJ D. Stress singularity, notch stress and structural stress at spot-welded joints[J]. Engineering Fracture Mecha-nics, 1989, 34(2):495-506. [24] RADAJ D, ZHANG S. Geometrically nonlinear behaviour or spot welded joints in tensile and compr-essive shear loading[J]. Engineering Fracture Mechanics, 1995, 51(2):281-294. [25] WAGARE V. Fatigue life prediction of spot welded joints:A review[J]. Proceedings of Fatigure, Durability and Fracture Mechanics, 2018, 36:445-455. [26] HOU Z, WANG Y, LI C, et al. An analysis of resistance spot welding[J]. Welding Journal, 2006, 85(3):36-40. [27] ADIB H. Fatigue life duration prediction for welded spots by volumetric method[J]. International Journal of Fatigue, 2004, 26(1):81-94. [28] SOCIE D F. Fatigue life prediction using local stress-strain concepts[J]. Experimental Mechanics, 1977, 17(2):50-56. [29] RADAJ D. Nominal structural stress for common spot welded specimens[J]. Construction, 1989, 41(81):255-259. [30] MADDOX S J. Fatigue design of welded structures[J]. International Journal of Fatigue, 1994, 16(2):155. [31] SHEPPARD S D. Estimation of fatigue propagation life in resistance spot welds[J]. Advances in Fatigue Predictive Techniques, 1993, 2:169-185. [32] RUPP A, GRUBISIC V, BUXBAUM O. Ermittlung ertragbarer Beanspruchungen am Schweiß punkt auf Basis der übertragenen Schnittgrößen[J]. FEA Schrift-enreihe, 1994, 111:235-244. RUPP A, GRUBISIC V, BUXBAUM O. Determination of tolerable stresses at the welding point based on the transferred internal forces[J]. FEA series, 1994, 111:235-244. [33] RUPP A, KLAUS S, GRUBISIC V. Computer aided dimensioning of spot-welded automotive structures[C]//International Congress & Exposition, 1995. [34] COOK R D. Roark's formulas for stress & strain[M]. 6th ed. New York:McGraw-Hill, 1989. [35] KANG H, BARKEY M E, LEE Y. Evaluation of multiaxial spot weld fatigue parameters for proportional loading[J]. International Journal of Fatigue, 2000, 22(8):691-702. [36] DONG P. A structural stress definition and numerical implementation for fatigue analysis of welded joints[J]. International Journal of Fatigue, 2001, 23(10):865-876. [37] 闫坤. 基于结构应力的拉剪点焊接头疲劳强度分析[D].昆明:昆明理工大学, 2015. YAN Kun. Fatigue strength analysis of tensile-shear spot welded joints based on structural stress[D]. Kunming:Kunming University of Science and Technology, 2015. [38] 吴骁. 钢材点焊接头疲劳测试与寿命预测方法研究[D].重庆:重庆大学, 2016. WU Xiao. Research on fatigue test and life prediction method of steel spot welding joints[D]. Chongqing:Chongqing University, 2016. [39] TADA H, PARIS P, IRWIN G. The stress analysis of cracks handbook[M]. 3th ed. New York:Del Research Corporation, 1985. [40] BROEK D. Elementary engineering fracture mechanics[M]. London:Martinus Nijhoff Publishers, 1982. [41] SWELLAM M H, KURATH P, LAWRENCE F V. Electric-potential-drop studies of fatigue crack develop-ment in tensile-shear spot welds[J]. International Journal of Fatigue, 1993, 15(1):383-401. [42] SWELLAM M H, BANAS G, LAWRENCE F V. A fatigue design parameter for spot welds[J]. Fatigue & Fracture of Engineering Materials & Structures, 2010, 17(10):1197-1204. [43] SWELLAM M H, LAWRENCE F V. A fatigue design parameter for spot welds[J]. International Journal of Fatigue, 1993, 15(3):251-251. [44] SHEPPARD S D. Further refinement of a methodology for fatigue life estimation in resistance spot weld connections[J]. Investigational New Drugs, 1996, 14(3):257-263. [45] RADAJ D, ZHANG S. Stress intensity factors for spot welds between plates of unequal thickness[J]. Engine-ering Fracture Mechanics, 1991, 39(2):391-413. [46] RADAJ D, ZHANG S. Stress intensity factors for spot welds between plates of dissimilar materials[J]. Engine-ering Fracture Mechanics, 1992, 42(3):407-426. [47] RADAJ D, ZHANG S. Simplified formulae for stress intensity factors of spot welds[J]. Engineering Fracture Mechanics, 1991, 40(1):233-236. [48] MARASHI S P H, POURANVARI M, SALEHI M, et al. Overload failure behaviour of dissimilar thickness resistance spot welds during tensile shear test[J]. Materials Science and Technology, 2010, 26(10):1220-1225. [49] POURANVARI M. MARASHI S P H. Key factors influencing mechanical performance of dual phase steel resistance spot welds[J]. Science and Technology of Welding and Joining, 2010, 15(2):149-155. [50] SUN X, STEPHENS E V, KHALEEL M A. Effects of fusion zone size and failure mode on peak load and energy absorption of advanced high strength steel spot welds under lap shear loading conditions[J]. Engineering Failure Analysis, 2008, 15(4):356-367. [51] 张小云. 双相钢点焊熔核界面撕裂失效机理与控制方法研究[D]. 上海:上海交通大学, 2008. ZHANG Xiaoyun. Study on the tear failure mechanism and control method of spot nugget interface in dual phase steel[D]. Shanghai:Shanghai Jiao Tong University, 2008. [52] ZHANG H, WEI A, QIU X, et al. Microstructure and mechanical properties of resistance spot welded dissimilar thickness DP780/DP600 dual-phase steel joints[J]. Materials & Design, 2014, 54:443-449. [53] 石燕栋. 铝合金点焊接头疲劳性能与寿命预测方法研究[D]. 南京:南京航空航天大学, 2013. SHI Yandong. Study on fatigue performance and life prediction method of aluminum alloy spot welded joints[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2013. [54] SUN X, STEPHENS E, DAVIES R, et al. Effects of failure modes on strength of aluminum resistance spot welds[C]//SAE 2005 World Congress & Exhibition. Detroit, Michigan, 2005. [55] SUN X, STEPHENS E, KHALEEL M. Effects of fusion zone size on failure modes and performance of advanced high strength steel spot welds[C]//SAE 2006 World Congress & Exhibition. Detroit, Michigan, 2006. [56] BARKEY M E, KANG H. Testing of spot welded coupons in combined tension and shear[J]. Experimental Techniques, 1999, 23(5):20-22. [57] LONG X, KHANNA S K. Fatigue properties and failure characterization of spot welded high strength steel sheet[J]. International Journal of Fatigue, 2007, 29(5):879-886. [58] LONG X, KHANNA S K. Fatigue performance of spot welded and weld bonded advanced high strength steel sheets[J]. Science and Technology of Welding and Joining, 2008, 13(3):241-247. [59] LIN S H, PAN J, WUNG P, et al. A fatigue crack growth model for spot welds under cyclic loading conditions[J]. International Journal of Fatigue, 2006, 28(7):792-803. [60] WANG B, DUAN Q Q, YAO G, et al. Fatigue fracture behaviour of spot welded B1500HS steel under tensile-shear load[J]. Fatigue & Fracture of Engineering Materials & Structures, 2015, 38(8):914-922. [61] RADAKOVIC D J, TUMULURU M. Predicting resistance spot weld failure modes in shear tension tests of advanced high-strength automotive steels[J]. Welding Journal, 2008, 87(4):96-105. [62] 王瑞杰, 尚德广, 刘泓滨. 两级加载下两焊点拉剪点焊接头的损伤[J]. 焊接学报, 2010, 31(12):77-80. WANG Ruijie, SHANG Deguang, LIU Hongbin. Damage of tension-shear spot welded joints of two solder joints under two-stage loading[J]. Journal of Welding, 2010, 31(12):77-80. [63] 王瑞杰, 徐晓东, 刘泓滨. 基于固有频率的两级加载下拉剪点焊结构疲劳损伤分析[J]. 机械科学与技术, 2010, 29(9):1193-1197. WANG Ruijie, XU Xiaodong, LIU Hongbin. Fatigue damage analysis of spot welded structure with two-stage loading down-shearing based on natural frequency[J]. Mechanical Science and Technology, 2010, 29(9):1193-1197. [64] 杨轶宁. 基于BP神经网络的点焊接头疲劳寿命预测研究[D]. 昆明:昆明理工大学, 2016. YANG Yining. Study on fatigue life prediction of spot welded joints based on BP neural network[D]. Kunming:Kunming University of Science and Technology, 2016. [65] LIU W, FAN H, GUO X Z, et al. Mechanical properties of resistance spot welded components of high strength austenitic stainless steel[J]. Journal of Materials Science & Technology, 2015, 32(6):561-565. [66] ESMAEILI F, RAHMANI A, BARZEGAR S, et al. Prediction of fatigue life for multi-spot welded joints with different arrangements using different multiaxial fatigue criteria[J]. Materials & Design, 2015, 72:21-30. [67] PAN N, SHEPPARD S. Spot welds fatigue life prediction with cyclic strain range[J]. International Journal of Fatigue, 2002, 24(5):519-528. [68] UWABA T, YANO Y, ITO M. Resistance spot weldability of 11Cr-ferritic/martensitic steel sheets[J]. Journal of Nuclear Materials, 2012, 421(1-3):132-139. [69] 韩长录. 超高强钢点焊残余应力的测试与数值分析[D].北京:北京工业大学, 2014. HAN Changlu. Test and numerical analysis of residual stress in spot welding of ultra high strength steel[D]. Beijing:Beijing University of Technology, 2014. [70] 黄志宏, 许彦强. 不锈钢车体结构设计及仿真分析要点[J]. 铁道车辆, 2012, 50(6):14-17. HUANG Zhihong, XU Yanqiang. Key points of struc-tural design and simulation analysis of stainless steel car body[J]. Railway Vehicles, 2012, 50(6):14-17. [71] ADIB H. Fatigue life duration prediction for welded spots by volumetric method[J]. International Journal of Fatigue, 2004, 26(1):81-94. [72] XU S, DENG X. An evaluation of simplified finite element models for spot-welded joints[J]. Finite Elements in Analysis and Design, 2004, 40(9-11):1175-1194. [73] PALMONELLA M, FRISWELL M I, MOTTERSHEAD J E, et al. Guidelines for the implementation of the CWELD and ACM2 spot weld models in structural dynamics[J]. Finite Elements in Analysis and Design, 2004, 41(2):193-210. [74] NAZRI N A, SANI M S M. Finite element normal mode analysis of resistance welding jointed of dissimilar plate hat structure[J]. Iop Conference Series:Materials Science and Engineering, 2017, 257:012059. [75] 杨明海. 改善焊接结构疲劳性能新技术[J]. 企业科技与发展, 2009, 1(9):15. YANG Minghai. New technology for improving fatigue performance of welded structures[J]. Enterprise Technology and Development, 2009, 1(9):15. [76] LEE Y L, PAN J, HATHAWAY R B, 等. 疲劳试验测试分析理论与实践[M].北京:机械工业出版社, 2011. LEE Y L, PAN J, HATHAWAY R B, et al. Fatigue testing and analysis theory and practice[M]. Beijing:China Machine Press, 2011. [77] POLLARD B. Fatigue strength of spot welds in Titanium-bearing Hsla steels[C]//SAE International SAE International Congress and Exposition, SAE Technical Paper Series, 1982, 1. [78] LIN S H, PAN J, WUNG P, et al. A fatigue crack growth model for spot welds under cyclic loading conditions[J]. International Journal of Fatigue, 2006, 28(7):792-803. [79] 吴冰. 不锈钢焊接接头疲劳失效评定方法研究[D]. 天津:天津大学, 2004. WU Bing. Research on fatigue failure assessment methods for stainless steel welded joints[D]. Tianjin:Tianjin University, 2004. [80] ZAMZAMI I A, SUSMEL L. On the accuracy of nominal, structural, and local stress based approaches in designing aluminium welded joints against fatigue[J]. International Journal of Fatigue, 2017, 101(2):137-158. [81] 周张义, 李芾, 卜继玲. 基于名义应力的焊接结构疲劳强度评定方法研究[J]. 内燃机车, 2007, 1(7):1-4. ZHOU Zhangyi, LI Fu, BU Jiling. Research on fatigue strength assessment method of welded structure based on nominal stress[J]. Diesel Locomotive, 2007, 1(7):1-4. [82] LEE Y L, LU M W. Fatigue-reliability analysis of resistance spot-welds[C]//Reliability and Maintainability Symposium, 1994. [83] 李娟. 镁/铝合金焊接接头疲劳评定的热点应力法研究[D]. 太原:太原理工大学, 2011. LI Juan. Research on hot spot stress method for fatigue evaluation of magnesium/aluminum alloy welded joints[D]. Taiyuan:Taiyuan University of Technology, 2011. [84] 王斌杰. 高速列车结构热点应力疲劳评定方法及应用研究[D]. 北京:北京交通大学, 2008. WANG Binjie. Research on hot spot stress fatigue evaluation method and application of high-speed train structures[D]. Beijing:Beijing Jiaotong University, 2008. [85] 马青娜, 邵飞, 高磊. 铝合金焊接接头疲劳研究进展综述[J]. 建筑结构, 2018, 48(S2):1022-1026. MA Qingna, SHAO Fei, GAO Lei. Review of fatigue research progress of aluminum alloy welded joints[J]. Building Structure, 2018, 48(S2):1022-1026. [86] 龚琼琼. 基于结构应力的焊接接头疲劳评估[D]. 杭州:浙江工业大学, 2013. GONG Qiongqiong. Fatigue evaluation of welded joints based on structural stress[D]. Hangzhou:Zhejiang University of Technology, 2013. [87] 揭志羽, 李亚东, 卫星, 等. 复杂应力场下焊接接头疲劳寿命评估的热点应力法[J]. 中国公路学报, 2017, 30(5):97-103. JIE Zhiyu, LI Yadong, WEI Xing, et al. Hot stress method for fatigue life evaluation of welded joints in complex stress fields[J]. Journal of China Highway, 2017, 30(5):97-103. [88] 闫坤, 王瑞杰. 最大主应力预测点焊疲劳寿命研究[J].机械科学与技术, 2016, 35(9):1387-1390. YAN Kun, WANG Ruijie. Research on fatigue life of spot welding with maximum principal stress[J]. Mechanical Science and Technology, 2016, 35(9):1387-1390. [89] 廖平, 肖林, 卫星, 等. 主梁新细节的疲劳寿命预测及参数分析[J]. 西南交通大学学报, 2016, 51(4):639-644. LIAO Ping, XIAO Lin, WEI Xing, et al. Fatigue life prediction and parameter analysis of new details of the main beam[J]. Journal of Southwest Jiaotong University, 2016, 51(4):639-644. [90] 王文静, 白锦仪, 刘伟. 基于热点应力法的焊接结构疲劳评估[J]. 北京交通大学学报, 2017, 41(6):82-87. WANG Wenjing, BAI Jinyi, LIU Wei. Fatigue evaluation of welded structures based on hot spot stress method[J]. Journal of Beijing Jiaotong University, 2017, 41(6):82-87. [91] RADAJ D. Design and analysis of fatigue resistant welded structures[M]. Cambridge:Abington Publishing, 1990. [92] XIAO Z G, YAMADA K. A method of determining geometric stress for fatigue strength evaluation of steel welded joints[J]. International Journal of Fatigue, 2004, 26(12):1277-1293. [93] LIU R, LIU Y Q, JI B H, et al. Hot spot stress analysis on rib-deck welded joint in orthotropic steel decks[J]. Journal of Constructional Steel Research, 2014, 97:1-9. [94] HOBBACHER A F. New developments at the recent update of the ⅡW recommendations for fatigue of welded joints and components[J]. Steel Construction, 2010, 3(4):231-242. [95] 杨新岐, 张艳新, 霍立兴, 等. 焊接接头疲劳评定的局部法研究现状[J]. 焊接学报, 2003, 24(3):82-86. YANG Xinqi, ZHANG Yanxin, HUO Lixing, et al. Research status of local method for fatigue evaluation of welded joints[J]. Journal of Welding, 2003, 24(3):82-86. [96] LAZZARIN P, LIVIERI P. Notch stress intensity factors and fatigue strength of aluminium and steel welded joints[J]. International Journal of Fatigue, 2001, 23(3):225-232. [97] LAZZARIN P, TOVO R. A notch intensity factor approach to the stress analysis of welds[J]. Fatigue & Fracture of Engineering Materials & Structures, 1998, 21(9):1089-1103. [98] TAYLOR D. Crack modeling:A technique for the fatigue design of components[J]. Engineering Failure Analysis, 1996, 3(2):129-136. [99] TAYLOR D, CIEPALOWICZ A J, ROGERS P, et al. Prediction of fatigue failure in a crank shaft using the technique of crack modelling[J]. Fatigue & Fracture of Engineering Materials & Structures, 1997, 20(1):13-21. [100] OSTASH O P, PANASYUK V V. Fatigue process zone at notches[J]. International Journal of Fatigue, 2001, 23(7):627-636. [101] TAYLOR D, BARRETT N, LUCANO G. Some new methods for predicting fatigue in welded joints[J]. International Journal of Fatigue, 2002, 24(5):509-518. [102] MCDIARMID D L. Fatigue under out-of-phase bending and torsion[J]. Fatigue and Fracture of Engineering Materials and Structures, 1987, 9(6):457-475. [103] QYLAFKU G, AZARI Z, KADI N, et al. Application of a new model proposal for fatigue life prediction on notches and key-seats[J]. International Journal of Fatigue, 1999, 21(8):753-760. [104] BERTINI L, FRENDO F, MARULO G. Fatigue life assessment of welded joints by two local stress appro-aches:The notch stress approach and the peak stress method[J]. International Journal of Fatigue, 2018, 110(5):246-253. [105] LIU W, YAO X, CHEN X. A local stress approach to predict the fatigue life of the U-notched PMMA plate at different temperatures[J]. International Journal of Fatigue, 2017, 103(10):436-443. [106] SATOH T, ABE H. Non-destructive detection of fatigue crack in spot-welded joint specimens[J]. Quarterly Journal of the Japan Welding Society, 1986, 4(4):666-673. [107] RADAJ D, LEHRKE H P, GREULING S. Theoretical fatigue-effective notch stresses at spot welds[J]. Fatigue & Fracture of Engineering Materials & Structures, 2001, 24(5):293-308. [108] RADAJ D, SONSINO C M, FRICKE W. Recent developments in local concepts of fatigue assessment of welded joints[J]. International Journal of Fatigue, 2009, 31(1):2-11. [109] PARIS P, ERDOGAN F. A critical analysis of crack propagation laws[J]. Journal of Basic Engineering, 1963, 85(4):528-533. [110] 刘会杰, 闫久春, 魏艳红. 焊接冶金与焊接性[M]. 北京:机械工业出版社, 2007. LIU Huijie, YAN Jiuchun, WEI Yanhong. Welding metallurgy and weldability[M]. Beijing:China Machine Press, 2007. [111] ZHANG J, DONG P, GAO Y. Evaluation of stress intensity factor-based predictive technique for fatigue life of resistance spot welds[C]//SAE 2001 World Congress, 2001. [112] 左银龙. 301L冷轧不锈钢点焊接头疲劳断裂分析[D].北京:北京交通大学, 2012. ZUO Yinlong. Fatigue fracture analysis of 301L cold rolled stainless steel spot welded joints[D]. Beijing:Beijing Jiaotong University, 2012. [113] ZHANG S. Approximate stress intensity factors and notch stresses for common spot-welded specimens[J]. Welding Journal, 1999, 78(5):173-179. [114] NEWMAM J A, DOWLING N E. A crack growth approach to life prediction of spot-welded lap joints[J]. Fatigue & Fracture of Engineering Materials & Structures, 1998, 21(9):1123-1132. [115] LEE H, CHOI J. Overload analysis and fatigue life prediction of spot-welded specimens using an effective J-ingergral[J]. Mechanics of Materials, 2005, 37(1):19-32. [116] 程亚军, 张春玉, 谢素明. 轨道车辆不锈钢车体焊点强度评估方法研究[J]. 大连交通大学学报, 2018, 39(2):43-47. CHENG Yajun, ZHANG Chunyu, XIE Suming. Study on the evaluation method of welding joint strength of stainless steel body of rail vehicle[J]. Journal of Dalian Jiaotong University, 2018, 39(2):43-47. [117] 俞壮壮, 孙振轩. 基于主S-N曲线法的T形接头疲劳评估和试验验证[J]. 计算机辅助工程, 2018, 27(2):18-22. YU Zhuangzhuang, SUN Zhenxuan. Fatigue evaluation and experimental verification of T-joints based on the main S-N curve method[J]. Computer Aided Engineering, 2018, 27(2):18-22. [118] 孙云, 朱黎明, 王龙轩, 等. 基于等效结构应力法的铸钢分叉节点环形对接焊缝的疲劳分析[J]. 应用力学学报, 2019, 36(1):183-189. SUN Yun, ZHU Liming, WANG Longxuan, et al. Fatigue analysis of circular butt welds of forked nodes of cast steel based on equivalent structural stress method[J]. Chinese Journal of Applied Mechanics, 2019, 36(1):183-189. [119] DONG P, HONG J K, OSAGE D A. Master S-N curve method for fatigue evaluation of welded components[J]. Welding Research Council Bulletin, 2002, 474:1-44. [120] 王亦军, 董奇志, 肖守讷, 等. 等效结构应力法的焊接疲劳评估[J]. 河南科技大学学报, 2017, 38(4):16-19. WANG Yijun, DONG Qizhi, XIAO Shoune, et al. Assessment of welding fatigue by equivalent structural stress method[J]. Journal of Henan University of Science & Technology, 2017, 38(4):16-19. [121] KANG H T. Fatigue prediction of spot welded joints using equivalent structural stress[J]. Materials & Design, 2007, 28(3):837-843. [122] 朱涛. 汽车结构中的点焊疲劳寿命计算[C]//中国CAE工程分析技术年会暨全国计算机辅助工程, 2005. ZHU Tao. Calculation of spot welding fatigue life in automotive structures[C]//China CAE Engineering Analysis Technology Annual Meeting and National Computer Aided Engineering, 2005. [123] 杨轶宁, 王瑞杰, 闫坤. 结构应力法预测点焊试件疲劳寿命[J]. 电焊机, 2016, 46(6):50-53. YANG Yining, WANG Ruijie, YAN Kun. Structure stress method for predicting fatigue life of spot welding test pieces[J]. Electric Welder, 2016, 46(6):50-53. [124] DONG P. Mesh-insensitive structural stress method for fatigue evaluation of welded structures[R]. Battelle Memorial Institute, Battelle SS JIP Training Course Materials, 2005. [125] KANG H T, DONG P, HONG J K. Fatigue analysis of spot welds using a mesh-insensitive structural stress approach[J]. International Journal of Fatigue, 2007, 29(8):1546-1553. [126] MIRSALEHI S E, KOKABI A H. Fatigue life estimation of spot welds using a crack propagation-based method with consideration of residual stresses effect[J]. Materials Science & Engineering, 2010, 527(23):6359-6363. [127] PARK J M, KANG H T. Prediction of fatigue life for spot welds using back-propagation neural networks[J]. Materials and Design, 2007, 28(10):2577-2584. [128] KANG H, BARKEY M E. Fatigue life estimation of spot welded joints using an interpolation/extrapolation technique[J]. International Journal of Fatigue, 1999, 21(8):769-777. [129] 王瑞杰, 尚德广, 李力森, 等. 基于固有频率变化的点焊接头疲劳寿命预测[J]. 北京工业大学学报, 2007, 33(12):1252-1256. WANG Ruijie, SHANG Deguang, LI Lisen, et al. Fatigue life prediction of spot welded joints based on natural frequency changes[J]. Journal of Beijing University of Technology, 2007, 33(12):1252-1256. [130] 湛兰, 秦湘阁. 不锈钢车体侧墙电阻点焊接头疲劳寿命预测[J]. 佳木斯大学学报, 2017, 35(5):799-802. ZHAN Lan, QIN Xiangge. Fatigue life prediction of resistance spot welding joints of stainless steel car body side walls[J]. Journal of Jiamusi University, 2017, 35(5):799-802. [131] 侯晓丹, 王瑞杰, 雷星海. 基于累积损伤理论的ST12钢T型点焊件寿命研究[J]. 热加工工艺, 2018, 47(19):196-201. HOU Xiaodan, WANG Ruijie, LEI Xinghai. Research on life of T-spot weldments of ST12 steel based on cumulative damage theory[J]. Hot Working Technology, 2018, 47(19):196-201. [132] ZHANG G, RICHTER B. A new approach to the numerical fatigue life prediction of spot-welded structure[J]. Fatigue & Fracture of Engineering Materials & Structures, 2008, 23(6):499-508. |
[1] | ZHAO Chengwei, ZHANG Wenhao, GONG Tiancheng, ZHANG Yiyun, WANG Changtao, LUO Xiangang. Optimal Design and Analysis of Ultra-flat Adsorption Loading for Planar Optical Components [J]. Journal of Mechanical Engineering, 2024, 60(5): 241-248. |
[2] | ZENG Shaoxi, ZHAO Chuntian, LI Hongmei. Response of Magnetic Flux Leakage Signal to Tensile Stress in Ferromagnetic Material [J]. Journal of Mechanical Engineering, 2024, 60(20): 68-76. |
[3] | ZHAO Xin, HUANG Jinjie. Optimization Methodology for Additive Manufacturing Parameter by Fused Deposition Modeling (FDM) Based on RSM-RVEA [J]. Journal of Mechanical Engineering, 2024, 60(19): 277-297. |
[4] | LI Yadong, TAO Yourui, WANG Chongshuai, DUAN Shuyong, LI Changfeng, JI Zhaoxin. Formation Mechanism and Suppression Strategies of Satellite Droplets for Piezoelectric Jet Dispensing within Short Distance [J]. Journal of Mechanical Engineering, 2024, 60(19): 347-355. |
[5] | LI Yiran, YAO Junping, LIANG Chaoqun, XIAO Peng, CHEN Guoxin, LI Buwei. Crack Initiation and Propagation Mechanism of SiC/AZ91D Composites During Uniaxial Tensile Process Based on Three-dimensional Microstructure [J]. Journal of Mechanical Engineering, 2024, 60(16): 160-170. |
[6] | CHEN Jiqing, TAO Hongda, LAN Fengchong, LI Weijian, JIANG Xinping. Analysis of the Influence of Low-temperature Cold Source on the Internal Temperature and Humidity Characteristics of Power Battery Packs [J]. Journal of Mechanical Engineering, 2024, 60(14): 227-237. |
[7] | DENG Zhiming, HUANG Tudi, HUANG Hongzhong, WEI Xunkai, WANG Hao. Study on Load Spectrum of Evolution Accelerated Test for Fatigue Spalling of Angular Contact Ball Bearings under Varying Working Conditions [J]. Journal of Mechanical Engineering, 2024, 60(13): 193-204. |
[8] | FENG Mingxiang, JIANG Qinglei, WANG Xuyan. Influence of Stress-free Temperature and Model Simplification in Life Evaluation of CCGA Packages [J]. Journal of Mechanical Engineering, 2024, 60(12): 268-276. |
[9] | LÜ Yingying, BAO Guangqing. Optimization and Characteristic Analysis of HTS Double-stator Permanent Magnet Vernier Machine [J]. Journal of Electrical Engineering, 2023, 18(3): 175-183. |
[10] | ZHENG Lei, SUN Xiaohan, Lü Dongming, LIU Ziwen, ZHU Zhuozhi, DONG Xianglong, WEI Wendong. Simulation and Process Study on the Rotary Ultrasonic Vibration Trepanning Drilling of GFRP [J]. Journal of Mechanical Engineering, 2023, 59(23): 391-400. |
[11] | YU Jian, GOU Baiyong, CHEN Guiyong, ZHANG Teng, MA Binlin, FAN Xianghong, CHEN Xin, WANG Yitao. Analysis of Fatigue Crack Growth Performance of Adhesive-rivet Hybrid Repaired Structure [J]. Journal of Mechanical Engineering, 2023, 59(22): 352-368. |
[12] | QI Lei, FEI Jiawen, WEN Jianfeng, TU Shantung. Interaction Behavior and Combination Rules of Two Through-wall Cracks under Tensile Loading [J]. Journal of Mechanical Engineering, 2023, 59(2): 113-126. |
[13] | TANG Yuling, YAN Fudi, ZHANG Junxia, ZHOU Zhengong, GUO Ying, JIANG Meijiao. Pull-through Performance of Carbon/Carbon Braided Composite Joints [J]. Journal of Mechanical Engineering, 2023, 59(18): 196-206. |
[14] | JI Hansong, SONG Qinghua, DU Yicong, LIU Zhanqiang. Grain-scale Pseudorandom Modelling and Simulation for Inconel-718 Miniature Parts [J]. Journal of Mechanical Engineering, 2023, 59(17): 232-240. |
[15] | ZHOU Yu, FAN Zhichao, JIANG Heng, WANG Yuxuan. Modified Logistic Creep Strain Prediction Model and Its Finite Element Implementation [J]. Journal of Mechanical Engineering, 2023, 59(16): 82-89. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||