SU Yongbin, LIU Tundong. Robust Modeling of Robot Trajectories Based on Mixture Probabilistic Movement Primitives[J]. Journal of Mechanical Engineering, 2025, 61(3): 167-177.
[1] 曾超,杨辰光,李强,等. 人-机器人技能传递研究进展[J]. 自动化学报,2019,45(10):1813-1828. ZENG Chao,YANG Chenguang,LI Qiang,et al. Research progress on human-robot skill transfer[J]. Acta Automatica Sinica,2019,45(10):1813-1828. [2] XIE Z W,ZHANG Q,JIANG Z N,et al. Robot learning from demonstration for path planning:A review[J]. Science China Technological Sciences,2020,63(8):1325-1334. [3] RAVICHANDAR H,POLYDOROS A S,CHERNOVA S,et al. Recent advances in robot learning from demonstration[J]. Annual Review of Control,Robotics,and Autonomous Systems,2020,3:297-330. [4] DAVCHEY T,LUUCK K S,BURKE M,et al. Residual learning from demonstration:Adapting dmps for contact-rich manipulation[J]. IEEE Robotics and Automation Letters,2022,7(2):4488-4495. [5] 迟明善,姚玉峰,刘亚欣. 基于示教编程的共融机器人技能学习方法的研究进展[J]. 仪器仪表学报,2020,41(1):71-83. CHI Mingshan,YAO Yufeng,LIU Yaxin. Research progress on coordinated robot skill learning method based on demonstration programming[J]. Journal of Instrumentation and Measurement Technology,2020,41(1):71-83. [6] WANG Y Q,HU Y D,EL Z S,et al. Optimised learning from demonstrations for collaborative robots[J]. Robotics and Computer-Integrated Manufacturing,2021,71:102169. [7] SOSA-CERON A D,GONZALEZ-HERNANDEZ H G,REYES-AVENDAÑO J A. Learning from demonstrations in human–robot collaborative scenarios:A survey[J]. Robotics,2022,11(6):126. [8] IJSPEERT A J,NAKANISHI J,HOFFMANN H,et al. Dynamical movement primitives:Learning attractor models for motor behaviors[J]. Neural Computation,2013,25(2):328-373. [9] REYNOLDS D A. Gaussian mixture models[J]. Encyclopedia of Biometrics,2009,741:659-663. [10] 杨威,郑玲,李以农. 基于高斯混合模型的个性化自动驾驶决策控制研究[J]. 机械工程学报,2022,58(16):280-289. YANG Wei,ZHENG Ling,LI Yinong. Research on personalized autonomous driving decision control based on gaussian mixture model[J]. Journal of Mechanical Engineering,2022,58(16):280-289. [11] YE C,YANG J,DING H. Bagging for Gaussian mixture regression in robot learning from demonstration[J]. Journal of Intelligent Manufacturing,2022,33(3):867-879. [12] VAKANSKI A,MANTEGH I,IRISH A,et al. Trajectory learning for robot programming by demonstration using hidden Markov model and dynamic time warping[J]. IEEE Transactions on Systems,Man,and Cybernetics,Part B (Cybernetics),2012,42(4):1039-1052. [13] EDDY S R. Hidden markov models[J]. Current Opinion in Structural Biology,1996,6(3):361-365. [14] CONKEY A,HERMANS T. Active learning of probabilistic movement primitives[C]// 2019 IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids). IEEE,2019:1-8. [15] PARASCHOS A,DANIEL C,PETERS J R,et al. Probabilistic movement primitives[J]. Advances in Neural Information Processing Systems,2013,26:2616-2624. [16] MOON T K. The expectation-maximization algorithm[J]. IEEE Signal Processing Magazine,1996,13(6):47-60. [17] MULLER M. Dynamic time warping[J]. Information Retrieval for Music and Motion,2007,4:69-84. [18] KHANSARI-ZADEH S M,BILLARD A. BM:An iterative algorithm to learn stable non-linear dynamical systems with gaussian mixture models[C]// 2010 IEEE International Conference on Robotics and Automation. IEEE,2010:2381-2388. [19] XING H,ZHU L,CHEN B,et al. A novel change detection method using remotely sensed image time series value and shape based dynamic time warping[J]. Geocarto International,2022,37(25):9607-9624. [20] FRÉCHET M M. Sur quelques points du calcul fonctionnel[J]. Rendiconti del Circolo Matematico di Palermo (1884-1940),1906,22(1):1-72.