Unsupervised Anomaly Detection for Liquid Rocket Engines with Multi-source Data Density Estimation Autoencoder
LIU Shen1, WANG Jun2, CHEN Jinglong1, LIU Zijun2
1. State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049; 2. Xi'an Aerospace Propulsion Institute, Xi'an 710100
LIU Shen, WANG Jun, CHEN Jinglong, LIU Zijun. Unsupervised Anomaly Detection for Liquid Rocket Engines with Multi-source Data Density Estimation Autoencoder[J]. Journal of Mechanical Engineering, 2025, 61(2): 36-45.
[1] 李京浩. 基于数据挖掘技术的液体火箭发动机故障检测和诊断研究[D]. 长沙:国防科学技术大学,2007. LI Jinghao. Fault detection and diagnosis of liquid rocket engine based on data mining[D]. Changsha:National University of Defense Technology,2007. [2] 房芳,郑辉,汪玉,等. 机械结构健康监测综述[J]. 机械工程学报,2021,57(16):269-292. FANG Fang,ZHEN Hui,WANG Yu,et al. Mechanical structural health monitoring:A review[J]. Journal of Mechanical Engineering,2021,57(16):269-292. [3] 王艳梅. 液体火箭发动机故障检测和诊断中数据挖掘技术的应用研究[D]. 长沙:国防科学技术大学,2005. WANG Yanmei. Studies on the application of data mining for fault detection and diagnosis of liquid rocket engine[D]. Changsha:National University of Defense Technology,2005. [4] XIE Q,TAO G,XIE C,et al. Abnormal data detection based on adaptive sliding window and weighted multiscale local outlier factor for machinery health monitoring[J]. IEEE Transactions on Industrial Electronics,2023,70(11):11725-11734. [5] 刘子俊,冯勇,陈景龙,等. 基于多源数据的液体火箭发动机智能异常检测[J]. 火箭推进,2022,48(3):79-86. LIU Zijun,FENG Yong,CHEN Jinglong,et al. Intelligent anomaly detection of liquid rocket engine with multi-source data[J]. Journal of Rocket Propulsion,2022,48(3):79-86. [6] 李栋,孙欣,刘树林. 基于变径边界样本界面检测器的异常度检测方法[J].机械工程学报,2020,56(10):57-63. LI Dong,SUN Xin,LIU Shulin. Equipment abnormal degree detection approach based on interface detector with variable-sized boundary samples[J]. Journal of Mechanical Engineering,2020,56(10):57-63. [7] 胡雷,胡茑庆,秦国军. 双阈值单类支持矢量机在线故障检测算法及应用[J]. 机械工程学报,2009,45(3):169-173. HU Lei,HU Niaoqing,QIN Guojun. Online fault detection algorithm based on double-threshold OCSVM and its application[J]. Journal of Mechanical Engineering,2009,45(3):169-173. [8] 张振臻,陈晖,高玉闪,等. 液体火箭发动机故障诊断技术综述[J]. 推进技术,2022,43(6):20-38. ZHANG Zhenzhen,CHEN Hui,GAO Yushan,et al. Review on fault diagnosis technology of liquid rocket engine[J]. Journal of Propulsion Technology,2022,43(6):20-38. [9] 朱明清. 基于Modelica的液体火箭推进系统故障仿真及系统实现[D]. 武汉:华中科技大学,2016. ZHU Mingqing. Fault simulation and software development of liquid rocket propulsion system based on modelica[D]. Wuhan:Huazhong University of Science and Technology,2016. [10] 薛薇,武小平,胡慧,等. 基于可视化界面的液氧甲烷发动机故障建模设计与实现[J]. 计算机测量与控制,2018,26(9):1-4. XUE Wei,WU Xiaoping,HU Hui,et al. Design and implementation of liquid oxygen/methane engine fault model based on visual interface[J]. Computer Measurement & Control,2018,26(9):1-4. [11] CHA J,KO S,PARK S Y,et al. Fault detection and diagnosis algorithms for transient state of an open-cycle liquid rocket engine using nonlinear Kalman filter methods[J]. Acta Astronautica,2019,163:147-156. [12] ALI M,GUPTA U K. An expert system for fault diagnosis in a Space Shuttle main engine[C/CD]// 26th Joint Propulsion Conference,1990. [13] GUPTA U K,ALI M. LEADER-an integrated engine behavior and design analyses based real-time fault diagnostic expert system for space shuttle main engine (SSME)[C]// Proceedings of the 2nd International Conference on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems,1989,1:135-145. [14] 张纯良,张振鹏,杨尔辅,等. 空间推进系统故障诊断专家系统研究[J]. 航空动力学报,2004,19(5):718-723. ZHANG Chunliang,ZHANG Zhenpeng,YANG Erfu,et al. Research on fault diagnoses expert system of space propulsion system[J]. Journal of Aerospace Power,2004,19(5):718-723. [15] 汪俊亮,高鹏捷,张洁,等. 制造大数据分析综述:内涵、方法、应用和趋势[J]. 机械工程学报,2023,59(12):1-16. WANG Junliang,GAO Pengjie,ZHANG Jie,et al. A review of manufacturing big data:connotation,methodology,application and trends[J]. Journal of Mechanical Engineering,2023,59(12):1-16. [16] LIU F T,TING K M,ZHOU Z H,et al. Isolation forest[C] // Proceedings of the 2008 Eighth IEEE International Conference on Data Mining,2008:413-422. [17] PEVNY T. Loda: Lightweight on-line detector of anomalies[J]. Machine Learning,2016,102(2):275-304. [18] 赵松波. 基于改进优化算法的液体火箭发动机故障检测与诊断研究[D]. 天津:天津理工大学,2019. ZHAO Songbo. Research on fault detection and diagnosis of liquid propellant rocket engine based on improved optimization algorithm[D]. Tianjin:Tianjin University of Technology,2019. [19] 张万旋,薛薇,张楠. 基于增量式孤立森林的液体火箭发动机异常检测方法[J]. 航空动力学报,2022,37(8):1674-1682. ZHANG Wanxuan,XUE Wei,ZHANG Nan. Anomaly detection method of liquid rocket engine based on incremental isolation forest[J]. Journal of Aerospace Power,2022,37(8):1674-1682. [20] HAN D,WANG Z,CHEN W,et al. DeepAID: Interpreting and improving deep learning-based anomaly detection in security applications[C]// Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security,2021:3197-3217. [21] ARELLANO-ESPITIA F,DELGADO-PRIETO M,MARTINEZ-VIOL V,et al. Anomaly Detection in Electromechanical Systems by means of Deep-Autoencoder[C]// 26th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA ),2021:1-6. [22] 朱晓彬. 基于卷积神经网络的液体火箭发动机故障检测与诊断方法研究[D]. 长沙:国防科学技术大学,2020. ZHU Xiaobin. Research on fault detection and diagnosis methods of liquid-propellant rocket engine based on convolutional neural network[D]. Changsha:National University of Defense Technology,2020. [23] DOSOVITSKIT A,BEYER L,KOLESNIKOV A,et al. An Image is worth 16x16 words: Transformers for image recognition at scale[C/CD]// Proceedings of the 9th International Conference on Learning Representations,2021. [24] LEE Y,KANG A P. AnoViT: Unsupervised anomaly detection and localization with vision Transformer-based encoder-decoder[J]. IEEE Access,2022,10:46717-46724. [25] YOU Z,CUI L,SHEN Y,et al. A unified model for multi-class anomaly detection[C/CD]// Proceedings of the 36th Conference on Neural Information Processing Systems,2022.