[1] AZAR F M, BEATY J H, CANALE S T. 坎贝尔骨科手术学[M]. 北京:北京大学医学出版社, 2018. AZAR F M, BEATY J H, CANALE S T. Campbell's operative orthopaedics[M]. Beijing:Peking University Medical Press, 2018. [2] 赵燕鹏. 长骨骨折精准手术机器人系统研究[D]. 北京:中国人民解放军医学院, 2016. ZHAO Yanpeng. Development of a surgical robot system for long bone fractures[D]. Beijing:Chinese People's Liberation Army Medical School, 2016. [3] VIBERT B, PAILHÉ R, MORIN V, et al. Navigation for lower limb alignment during internal fixation of complex tibial-plateau fractures[J]. Orthopaedics & Traumatology:Surgery & Research, 2018, 104(4):491-496. [4] WEIL Y A, GREENBERG A, KHOURY A, et al. Computerized navigation for length and rotation control in femoral fractures:A preliminary clinical study[J]. Journal of Orthopaedic Trauma, 2014, 28(2):27-33. [5] GÖSLING T, WESTPHAL R, FAÜLSTICH J, et al. Forces and torques during fracture reduction:Intraoperative measurements in the femur[J]. Journal of Orthopaedic Research, 2006, 24(3):333-338. [6] BOUAZZA M K, BROWBANK I, HEWIT J R. Robotic-assisted internal fixation of femoral fractures[J]. Proceedings of the Institution of Mechanical Engineers, Part H:Journal of Engineering in Medicine, 1995, 209(1):51-58. [7] MARZIEH S, ALRUWAILI F, MCMILLAN S, et al. A surgical robotic system for long-bone fracture alignment:Prototyping and cadaver study[J]. IEEE Transactions on Medical Robotics and Bionics, 2022, 4(1):172-182. [8] GOSLING T, WESTPHAL R, HUFNER T, et al. Robot-assisted fracture reduction:A preliminary study in the femur shaft[J]. Medical and Biological Engineering and Computing, 2005, 43(1):115-120. [9] WESTPHAL R, WINKELBACH S, WAHL F, et al. Robot-assisted long bone fracture reduction[J]. The International Journal of Robotics Research, 2009, 28(10):1259-1278. [10] KUANG S, LEUNG K, WANG T, et al. A novel passive/active hybrid robot for orthopaedic trauma surgery:A novel robot for orthopaedic trauma surgery[J]. The International Journal of Medical Robotics and Computer Assisted Surgery, 2012, 8(4):458-467. [11] GRAHAM A E, XIE S Q, AW K C, et al. Bone-muscle interaction of the fractured femur[J]. Journal of Orthopaedic Research, 2008, 26(8):1159-1165. [12] ZHAO J X, LI C, REN H, et al. Evolution and current applications of robot-assisted fracture reduction:A comprehensive review[J]. Annals of Biomedical Engineering, 2020, 48(1):203-224. [13] SEIDE K, FASCHINGBAUER M, WENZL M E, et al. A hexapod robot external fixator for computer assisted fracture reduction and deformity correction[J]. The International Journal of Medical Robotics and Computer Assisted Surgery, 2004, 1(1):64-69. [14] ABEDINNASAB M H, FARAHMAND F, GALLARDO A J. The wide-open three-legged parallel robot for long-bone fracture reduction[J]. Journal of Mechanisms and Robotics, 2017, 9(1):015001. [15] JAMWAL P K, HUSSAIN S, GHAYESH M H. Intrinsically compliant parallel robot for fractured femur reduction:Mechanism optimization and control[J]. Robotics and Autonomous Systems, 2021, 141:103787. [16] 罗子茂, 李艳文, 彭宏鑫, 等. 3-RRS并联机构的奇异性质研究[J]. 机械工程学报, 2023, 59(23):33-45. LUO Zimao, LI Yanwen, PENG Hongxin, et al. Singular properties research on 3-RRS parallel mechanisms[J]. Journal of Mechanical Engineering, 2023, 59(23):33-45. [17] ZLATANOV D, FENTON R G, BENHABIB B. A unifying framework for classification and interpretation of mechanism singularities[J]. Journal of Mechanical Design, 1995, 117(4):566-572. [18] 李保坤, 曹毅, 黄真, 等. 基于单位四元数的Stewart机构姿态工作空间研究[J]. 机器人, 2008, 30(4):353-358. LI Baokun, CAO Yi, HUANG Zhen, et al. Orientation workspace analysis of stewart platform based on unit quaternion[J]. Robot, 2008, 30(4):353-358. [19] 程世利, 吴洪涛, 王超群, 等. 平面平台型Stewart并联机构的奇异性分析[J]. 机械工程学报, 2011, 47(9):1-7. CHENG Shili, WU Hongtao, WANG Chaoqun, et al. Singularity analysis of stewart parallel mechanism with planar platform[J]. Journal of Mechanical Engineering, 2011, 47(9):1-7. [20] WANG J, GOSSELIN C M. Kinematic analysis and design of kinematically redundant parallel mechanisms[J]. Journal of Mechanical Design, 2004, 126(1):109-118. [21] MOHAMED M G, GOSSELIN C M. Design and analysis of kinematically redundant parallel manipulators with configurable platforms[J]. IEEE Transactions on Robotics, 2005, 21(3):277-287. [22] LIANG X, ZENG X, LI G, et al. Design, analysis, and optimization of a kinematically redundant parallel robot[J]. Actuators, 2023, 12(3):120. [23] LI Y, ZHANG Y, ZHANG L. A new method for type synthesis of 2R1T and 2T1R 3-DOF redundant actuated parallel mechanisms with closed loop units[J]. Chinese Journal of Mechanical Engineering, 2020, 33(1):78. [24] GOSSELIN C, SCHREIBER L T. Kinematically redundant spatial parallel mechanisms for singularity avoidance and large orientational workspace[J]. IEEE Transactions on Robotics, 2016, 32(2):286-300. [25] NOURI R A B, FARID M, MAHZOON M. Redundancy resolution and control of a novel spatial parallel mechanism with kinematic redundancy[J]. Mechanism and Machine Theory, 2019, 133:112-126. [26] LIANG X, ZENG X, LI G, et al. Kinematic analysis of three redundant parallel mechanisms for fracture reduction surgery[J]. Mechanism and Machine Theory, 2023, 188:105400. [27] HAMID D T. 并联机器人:机构学与控制[M]. 北京:机械工业出版社, 2018. HAMID D T. Parallel robots:Mechanics and control[M]. Beijing:China Machine Press, 2018. [28] BONEV I A, RYU J. A new approach to orientation workspace analysis of 6-DOF parallel manipulators[J]. Mechanism and Machine Theory, 2001, 36(1):15-28. [29] GOSSELIN C, SCHREIBER L T. Kinematically redundant spatial parallel mechanisms for singularity avoidance and large orientational workspace[J]. IEEE Transactions on Robotics, 2016, 32(2):286-300. [30] GOSSELIN C M. The optimum design of robotic manipulators using dexterity indices[J]. Robotics and Autonomous Systems, 1992, 9(4):213-226. [31] THOMAS M J, JOY M L, SUDHEER A P. Kinematic and dynamic analysis of a 3-PRUS spatial parallel manipulator[J]. Chinese Journal of Mechanical Engineering, 2020, 33(1):13. [32] KIM S G, RYU J. New dimensionally homogeneous jacobian matrix formulation by three end-effector points for optimal design of parallel manipulators[J]. IEEE Transactions on Robotics and Automation, 2003, 19(4):731-737. [33] POND G, CARRETERO J A. Quantitative dexterous workspace comparison of parallel manipulators[J]. Mechanism and Machine Theory, 2007, 42(10):1388-1400. [34] GOSSELIN C, ANGELES J. A global performance index for the kinematic optimization of robotic manipulators[J]. Journal of Mechanical Design, 1991, 113(3):220-226. [35] LI G, CHENG L, SUN N. Design, manipulability analysis and optimization of an index finger exoskeleton for stroke rehabilitation[J]. Mechanism and Machine Theory, 2022, 167:104526 |