[1] ZOU Y P, WANG N, WANG X, et al. Design and experimental research of movable cable-driven lower limb rehabilitation robot[J]. IEEE ACCESS, 2019, 7:2315-2326. [2] 姚玉峰, 杨云龙, 郭军龙, 等. 膝关节术后康复训练机器人研究综述[J]. 机械工程学报, 2021, 57(5):1-18. YAO Yufeng, YANG Yunlong, GUO Junlong, et al. Review of research on knee-postoperative rehabilitation training robot[J]. Journal of mechanical engineering, 2021, 57(5):1-18. [3] ROGERIO S G, JOAO C M C, LUCAS A, et al. Cable-driven parallel manipulator for lower limb rehabilitation[C]//Informat Engn Res Inst. Applied Mechanics and Mechanical Engineering IV, OCT 11-12, 2013, Singapore. Switzerland:Trans. Tech. Publications Ltd, 2014:535-542. [4] MAHMOUDI K A, NAJAFI F. A survey on soft lower limb cable-driven wearable robots without rigid links and joints[J]. Robotics and Autonomous Systems, 2021, 144:103846. [5] COLOMBO G, JOERG M, SHREIER R, et al. Treadmill training of paraplegic patients using a robotic orthosis[J]. Journal of Rehabilitation Research & Development, 2000, 37(6):693-700. [6] ESQUENAZI A, TALATY M, PACKEL A, et al. The ReWalk powered exoskeleton to restore ambulatory function to individual with thoracic-level motor-complete spinal cord injury[J]. American Journal of Physical Medicine & Rehabilitation, 2012, 91(11):911-921. [7] 邱波. 踏板式下肢康复机器人的设计与研究[D]. 广东:广东工业大学, 2020. QIU Bo. The Design and research of pedal-type lower limb rehabilitation robot[D]. Guangdong:Guangdong University of Technology, 2020. [8] UGURLU B, NISHIMURA M, HYODO K, et al. Proof of concept for robot-aided upper limb rehabilitation using disturbance observers[J]. IEEE Trans. Human-Mach. Syst., 2015, 45(1):110-118. [9] 张晓超. 下肢康复训练机器人关键技术研究[D]. 哈尔滨:哈尔滨工程大学, 2009. ZHANG Xiaochao. Research on key technologies of lower limbs rehabilitation robot[D]. Harbin:Harbin Engineering University, 2009. [10] YING M, XIN J, DUTTA G G, et al. Human movement training with a cable driven ARm EXoskeleton (CAREX)[J]. IEEE Trans. Neural Syst. Rehabil. Eng., 2015, 23(1):84-92. [11] 邹宇鹏, 王诺, 刘凯, 等. 可移动式柔索驱动下肢康复机器人设计及分析[J]. 华中科技大学学报, 2019, 47(1):22-26. ZOU Yupeng, WANG Nuo, LIU Kai, et al. Design and analysis of movable cable-driven lower limb rehabilitation robot[J]. J. Huazhong Univ. of Sci. & Tech., 2019, 47(1):22-26. [12] CAFOLLA D, RUSSO M, CARBONE G. CUBE, a Cable-driven device for limb rehabilitation[J]. Journal of Bionic Engineering, 2019, 16(3):492-502. [13] HOMMA K, FUKUDA O, NAGATA Y. Study of a wire-driven leg rehabilitation system[C]//IEEE Robot & Automat Soc. IEEE/RSJ International Conference on Intelligent Robots and Systems, Sep. 30-Oct. 4, 2002, Lausanne. New York:IEEE, 2002:1451-1456. [14] MIYASAKA M, MATHESON J, LEWIS A, et al. Measurement of the cable-pulley Coulomb and viscous friction for a cable-driven surgical robotic system[C]//IEEE Robot & Automat Soc. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Sep. 28-Oct. 2, 2015, Hamburg. New York:IEEE, 2016:804-810. [15] 刘泉, 谢先亮, 孟伟, 等. 柔性脚踝康复机器人自适应迭代学习控制[J]. 华中科技大学学报, 2023, 51(5):53-59. LIU Quan, XIE Xianliang, MENG Wei, et al. Adaptive iterative learning control of flexible ankle rehabilitation robot[J]. J. Huazhong Univ. of Sci. & Tech., 2023, 51(5):53-59. [16] AWAD L N, BAE J, O'DONNELL K, et al. A soft robotic exosuit improves walking in patients after stroke[J]. Science Translational Medicine, 2017, 400(9):1946-6242. [17] HEO J, CHOI S, PAR K. Workspace analysis of a 6-DOF cable-driven parallel robot considering pulley bearing friction under ultra-high acceleration[J]. Microsystem Technologies. 2017, 23(7):2615-2627. [18] CHOI S, PARK J, PARK K. Tension analysis of a 6-degree-of-freedom cable-driven parallel robot considering dynamic pulley bearing friction[J]. Advances in Mechanical Engineering, 2017, 9(8):2071940586. [19] SONG Z B, JU W J, CHEN D C, et al. A novel wheelchair-exoskeleton hybrid robot to assist movement and aid rehabilitation[C]//IEEE Robot & Automat Soc. IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS), Oct 23-27, 2022, Tokyo. New York:IEEE, 2023:11127-11133. [20] 郭铁成, 黄晓琳, 尤春景. 康复医学临床指南[M]. 3版. 北京:科学出版社, 2023. GUO Tiecheng, HUANG Xiaolin, YOU Chunjing. Clinical guidelines for rehabilitation medicine[M]. 3rd ed. Beijing:Science Press, 2023. [21] CHARRY G T, MENDOZA J B G. An experimental test bench for cable-driven transmission[J]. Machines, 2021, 9(5):83. [22] JUNG J H, PAN N, KANG T J. Generalized capstan problem:bending rigidity, nonlinear friction, and extensibility effect[J]. Tribol. Int., 2008, 41:524-534. [23] NAKKA S, VASHISTA V. External dynamics dependent human gait adaptation using a cable-driven exoskeleton[J]. IEEE Robotics and Automation Letters, 2023, 8(9):6036-6043. [24] ESCARABAJAL R J, PULLOQUINGA J L, ZAMORA O P, et al. Imitation learning-based system for the execution of self-paced robotic-assisted passive rehabilitation exercises[J]. IEEE Robotics and Automation Letters, 2023, 8(7):4283-4290 |