1. School of Advanced Manufacturing, Fuzhou University, Jinjiang 362200; 2. School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108
[1] 刘世锋,宋玺,薛彤,等. 钛合金及钛基复合材料在航空航天的应用和发展[J]. 航空材料学报,2020,40(3):77-94. LIU Shifeng,SONG Xi,XUE Tong,et al. Application and development of titanium alloy and titanium matrix composites in aerospace[J]. Journal of Aerospace Materials,2020,40(3):77-94. [2] FAN K,LIU D,ZHANG X,et al. Effect of residual stress induced by ultrasonic surface rolling on fretting fatigue behaviors of Ti-6Al-4V alloy[J]. Engineering Fracture Mechanics,2022,259:108150. [3] 夏宜龙. TC4人工关节球头的抛光及摩擦磨损性能研究[D]. 哈尔滨:哈尔滨工业大学,2020. XIA Yilong. Polishing and friction wear performance study of TC4 artificial joint ball head[D]. Harbin:Harbin Institute of Technology,2020. [4] XIA T,LIANG T,XIAO Z,et al. Nanograined copper foil as a high-performance collector for lithium-ion batteries[J]. Journal of Alloys and Compounds,2020,831:154801. [5] CHEN D,HU Y,GUO L,et al. The modified wear resistance of uranium induced by ultrasonic surface rolling process[J]. Wear,2022,502-503:204390. [6] LIU R,YUAN S,LIN N,et al. Application of ultrasonic nanocrystal surface modification (UNSM) technique for surface strengthening of titanium and titanium alloys:A mini review[J]. Journal of Materials Research and Technology,2021,11:351-377. [7] LIANG X,LIU Z,WANG B. Multi-pattern failure modes and wear mechanisms of WC–Co tools in dry turning Ti-6Al-4V[J]. Ceramics International,2020,46(15):24512-24525. [8] SUI S,FENG P. The influences of tool wear on Ti6Al4V cutting temperature and burn defect[J]. The International Journal of Advanced Manufacturing Technology,2016,85(9-12):2831-2838. [9] YANG D,LIU Z. Surface topography analysis and cutting parameters optimization for peripheral milling titanium alloy Ti-6Al-4V[J]. International Journal of Refractory Metals and Hard Materials,2015,51:192-200. [10] DHANANCHEZIAN M,PRADEEP K M. Cryogenic turning of the Ti–6Al–4V alloy with modified cutting tool inserts[J]. Cryogenics,2011,51(1):34-40. [11] 应峰,缪强,黄俊,等. 钛合金表面原位合成TiN渗镀层摩擦性能研究[J]. 金属热处理,2009,34(9):29-32. YIN Feng,MIU Qiang,HUANG Jun,et al. Study on the frictional properties of in-situ synthesized TiN infiltration coating on titanium alloy surface[J]. Metal Heat Treatment,2009,34(9):29-32. [12] YUAN J,REN X,YU Y,et al. Protection properties of TiN coating prepared by arc ion plating and magnetron sputtering on TC11 titanium alloy[J]. Journal of Iron and Steel Research,International,2007,14(5):142-146. [13] 王世洪,梁佑明,沈桂琴. TC11钛合金微动磨损及疲劳防护工艺的探讨[J]. 航空学报,1996,17(3):379-382. WANG Shihong,LIANG Youming,SHENG Guiqin. TC11 titanium alloy micro-motion wear and fatigue protection process[J]. Journal of Aviation,1996,17(3):379-382. [14] LIN S,ZHOU K,DAI M,et al. Structural, mechanical, and sand erosion properties of TiN/Zr/ZrN multilayer coatings[J]. Vacuum,2015,122:179-186. [15] HONG X,TAN Y,WANG X,et al. Microstructure and wear resistant performance of TiN/Zr-base amorphous-nanocrystalline composite coatings on titanium alloy by electrospark deposition[J]. Surface and Coatings Technology,2016,305:67-75. [16] 高霁,冯俊文,宋德阳. 激光熔覆CBN膜层的形态特征及性能研究[J]. 表面技术,2014,43(4):27-31. GAO Wen,FENG Junwen,SONG Deyang. Study of morphological characteristics and properties of laser clad CBN film layers[J]. Surface Technology,2014,43(4):27-31. [17] GAO J,SONG D,FENG J. Effect of laser power on microstructure and properties of CBN coating by laser cladding on TC11 titanium alloy[J]. Applied Mechanics and Materials,2014,59894-59897. [18] 郭凯,梁文萍,贲能军,等. 等离子渗Mo的TC11钛合金摩擦磨损性能[J]. 热处理,2011,26(3):21-24. GUO Kai,LIANG Wenpin,BEN Nengjun,et al. Frictional wear properties of TC11 titanium alloy with plasma Mo infiltration[J]. Heat Treatment,2011,26(3):21-24. [19] YU X,LIANG W,MIAO Q,et al. Tribological behavior of plasma Mo-alloyed layer on TC11 alloy under different loads[J]. Rare Metal Materials and Engineering,2015,44(3):557-562. [20] REN X,TONG Z,ZHOU W,et al. High temperature wear performance of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy subjected to laser shock peening[J]. Materials Science and Technology,2018,34(18):2294-2304. [21] 潘高峰,朱磊,苑泽伟,等. 超声滚压工艺对TC4钛合金表面残余应力的影响[J]. 现代制造工程,2022(1):85-90. PAN Gaofeng,ZHU Lei,YUAN Zewei,et al. Effect of ultrasonic rolling process on the residual stress on the surface of TC4 titanium alloy[J]. Modern Manufacturing Engineering,2022(1):85-90. [22] 李凤琴,赵波. 超声加工滚压力对钛合金表层特性的影响[J]. 表面技术,2019,48(10):34-40. LI Fengqin,ZHAO Bo. Effect of ultrasonic processing rolling pressure on the surface layer properties of titanium alloy[J]. Surface Technology,2019,48(10):34-40. [23] ZHENG K,LIN Y,CAI J,et al. Corrosion resistance and tribological properties of laser cladding layer of H13 die steel strengthened by ultrasonic rolling[J]. Chinese Journal of Mechanical Engineering,2022,35:137. [24] 郑开魁,林有希,蔡建国,等. 超声滚压工艺对模具钢激光熔覆层表面质量的影响[J]. 机械工程学报,2022,58(12):111-120. ZHENG Kaikui,LIN Youxi,CAI Jianguo,et al. Effect of ultrasonic rolling process on surface quality of laser cladding layer of die steel[J]. Journal of Mechanical Engineering,2022,58(12):111-120. [25] ZHOU Z,ZHENG Q,DING C,et al. A review of the development of surface burnishing process technique based on bibliometric analysis and visualization[J]. The International Journal of Advanced Manufacturing Technology,2021,115(5-6):1955-1999. [26] 王伟. 超声表面纳米化对低合金钢摩擦磨损性能研 究[D]. 北京:中国石油大学,2011. WANG Wei. Study on the frictional wear performance of low-alloy steel by ultrasonic surface nanosizing[D]. Beijing:China University of Petroleum,2011. [27] REN Z,LAI F,QU S,et al. Effect of ultrasonic surface rolling on surface layer properties and fretting wear properties of titanium alloy Ti5Al4Mo6V2Nb1Fe[J]. Surface and Coatings Technology,2020,389:125612. [28] LIU C,LIU D,ZHANG X,et al. Fretting fatigue characteristics of Ti-6Al-4V alloy with a gradient nanostructured surface layer induced by ultrasonic surface rolling process[J]. International Journal of Fatigue,2019,125:249-260. [29] 赵永胜,牛娜娜,杨聪彬,等. 基于多尺度下塑性指数模型的结合面接触刚度计算方法[J]. 振动与冲击,2022(3):115-122. ZHAO Yongsheng,NIU Nana,YANG Congbin,et al. Calculation method for contact stiffness of contact surface based on multi-scale plastic index model[J]. Journal of Vibration and Shock,2022(3):115-122. [30] 温诗铸,黄平. 摩擦学原理[M]. 北京:清华大学出版社,2002. WEN Shizhu,HUANG Ping. Principles of tribology[M]. Beijing:Tsinghua University Press,2002. [31] 张翼,张明,毛蜀平,等. 超声辅助滚压加工中颤振问题的研究[J]. 制造技术与机床,2017(3):103-107. ZHANG Yi,ZHANG Ming,MAO Shuping,et al. Study of chattering in ultrasonic-assisted roll machining[J]. Manufacturing Technology and Machine Tools,2017(3):103-107. [32] 王锦. TC4钛合金超声冲击表面纳米化及高温退火组织与性能研究[D]. 西安:西安理工大学,2018. WANG Jin. Ultrasonic impact surface nanosizing and high temperature annealing organization and properties of TC4 titanium alloy[D]. Xi’an:Xi’an University of Technology,2018. [33] LEYENS C,PETERS M. titanium and titanium alloys: Fundamentals and applications[M]. New York:John Wiley & Sons Inc,2003. [34] 杨兴宽,刘颖鑫,武小鹏,等. 机车车轮复合超声滚压表面强化工艺研究[J]. 铁道技术监督,2018,46(8):36-39. YANG Xingkuang,LIU Yingxin,WU Xiaopeng,et al. Research on composite ultrasonic rolling surface strengthening process for locomotive wheels[J]. Railway Technical Supervision,2018,46(8):36-39.