Research on Cutter Path Generation for 5-Axis U Cycloid Milling Based on Dimension Reduction Mapping
FENG Jingyang1, WEI Zhaocheng1, WANG Minjie1, SHU Xin2, ZHANG Yong2, YONG Jianhua2
1. Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116024; 2. Shenyang Blower Works Group Corporation, Shenyang 110869
FENG Jingyang, WEI Zhaocheng, WANG Minjie, SHU Xin, ZHANG Yong, YONG Jianhua. Research on Cutter Path Generation for 5-Axis U Cycloid Milling Based on Dimension Reduction Mapping[J]. Journal of Mechanical Engineering, 2024, 60(5): 362-377.
[1] FU Youzhi,GAO Hang,WANG Xuanping,et al. Machining the integral impeller and blisk of aero-engines:A review of surface finishing and strengthening technologies[J]. Chinese Journal of Mechanical Engineering,2017,30:528-543. [2] 陈晧晖,刘华明,孙春华. 发动机叶轮侧铣数控加工方法及误差计算[J]. 机械工程学报,2003,39(7):143-145. CHEN Haohui,LIU Huaming,SUN Chunhua. Numerical control machining method and error calculation of engine impeller side milling[J]. Journal of Mechanical Engineering,2003,39(7):143-145. [3] FAN Hongzhou,XI Guang,WANG Wei,et al. An efficient five-axis machining method of centrifugal impeller based on regional milling[J]. The International Journal of Advanced Manufacturing Technology,2016,87:789-799. [4] ALBERRO A N A P,ROJAS H A N A,EGEA A J S A,et al. Model based on an effective material-removal rate to evaluate specific energy consumption in grinding[J]. Materials,2019,12(6):939. [5] WANG Xiaojuan,SONG Qinghua,LIU Zhanqiang. Dynamic model and stability prediction of thin-walled component milling with multi-modes coupling effect[J]. Journal of Materials Processing Technology,2021,288:116869. [6] ELMIDANY T T,ELKERAN A,TAWFIK H. Toolpath pattern comparison:Contour-parallel with direction-parallel[J]. Geometric Modeling and Imaging-New Trends (GMAI'06),2006:77-82. [7] CHEN Tao,LIU Jiaqiang,LIU Gang,et al. Experimental study on titanium alloy cutting property and wear mechanism with circular-arc milling cutters[J]. Chinese Journal of Mechanical Engineering,2023,36:1-11. [8] LEE S,KIM H,YANG M. Mesh-based tool path generation for constant scallop-height machining[J]. The International Journal of Advanced Manufacturing Technology,2008,37:15-22. [9] KIM B H,CHOI B K. Guide surface based tool path generation in 3-axis milling:An extension of the guide plane method[J]. Comput. Aided Des.,2000,32:191-199. [10] CHU C,CHEN H,CHANG C. Continuity-preserving tool path generation for minimizing machining errors in five-axis CNC flank milling of ruled surfaces[J]. Journal of Manufacturing Systems,2020,55:171-178. [11] SUN Shuoxue,YAN Shichao,JIANG Shanglei,et al. A high-accuracy tool path generation (HATPG) method for 5-axis flank milling of ruled surfaces with a conical cutter based on instantaneous envelope surface modelling[J]. Computer-Aided Design,2022,151:103354. [12] LU Yaoan,WANG Chengyong. Smoothing method of generating flank milling tool paths for five-axis flat-end machining considering constraints[J]. The International Journal of Advanced Manufacturing Technology,2020,110:1-15. [13] 卫星驰,赵嫚,杨青平,等. 考虑工件变形的五轴侧铣薄壁件铣削力建模[J]. 机械工程学报,2022,58(7):317-324. WEI Xingchi,ZHAO Man,YANG Qingping,et al. Milling force modeling of thin-walled parts with 5-axis flank milling considering workpiece deformation[J]. Journal of Mechanical Engineering,2022,58(7):317-324. [14] 卢耀安,陈守峰,王成勇. 鼓形铣刀侧铣加工叶盘叶片曲面的光顺刀具路径生成方法[J]. 机械工程学报,2022,58(1):256-266. LU Yaoan,CHEN Shoufeng,WANG Chengyong. Smoothing tool path generation method for side milling bladed disk blade surface with drum milling cutter[J]. Journal of Mechanical Engineering,2022,58(1):256-266. [15] HE Dong,LI Zhaoyu,LI Xiangyu,et al. Collision-conscious multi-pass flank milling of complicated parts based on stripification[J]. Computer-Aided Design,2023,157:103469. [16] MAO Jian,ZHAO Man,WEI Xingchi,et al. A material constitutive model-based prediction method for flank milling force considering the deformation of workpiece[J]. Journal of Manufacturing Processes,2022,84:403-413. [17] ZHOU Yu,XING Tong,SONG Yue,et al. Digital-twin-driven geometric optimization of centrifugal impeller with free-form blades for five-axis flank milling[J]. Journal of Manufacturing Systems,2021,58:22-35. [18] 史兰宇,王晨光,陈杰,等. 高温合金蜂窝芯高速铣削材料去除机理与损伤行为[J]. 机械工程学报,2022,58(23):284-295. SHI Lanyu,WANG Chenguang,CHEN Jie,et al. Material removal mechanism and damage behavior in high-speed milling of high-temperature alloy honeycomb core[J]. Journal of Mechanical Engineering,2022,58(23):284-295. [19] MONTASSAR F,RIC M F E D,JOHANNA S,et al. Cutting parameters and tool geometry selection for plunge milling - analysis of cutting forces at the bottom of deep titanium workpieces[J]. Journal of Manufacturing Processes,2021,62:491-500. [20] BRANS B,BAIER S,SCHRAKNEPPER D,et al. Empirical studies on the influence of tool and process parameters on the machinability in plunge milling of lead-free cuzn-alloys[J]. Procedia CIRP,2022,115:113-118. [21] WAKAOKA S,YAMANE Y,SEKIYA K,et al. High-speed and high-accuracy plunge cutting for vertical walls[J]. Journal of Materials Processing Technology,2002,127:246-250. [22] CAFIERI S,MONIES F E D E,MONGEAU M,et al. Plunge milling time optimization via mixed-integer nonlinear programming[J]. Comput. Ind. Eng,2016,98:434-445. [23] DANIS I,WOJTOWICZ N,MONIES F E D E,et al. Cutting conditions and surface integrity during dry plunge-milling of a wrought magnesium alloy[J]. Procedia Engineering,2013,63:36-44. [24] 冯英东,王学勤,舒鑫,等. 刀具刃倾角对半刀宽插铣载荷冲击的影响实验研究[J]. 工具技术,2023,57(2):12-19. FENG Yingdong,WANG Xueqin,SHU Xing,et al. Experimental study on influence of tool cutting edge inclination on load impact in half tool wide plunge milling[J]. Tool Technology,2023,57(2):12-19. [25] RAUCH M,HASCOET J Y. Selecting a milling strategy with regard to the machine tool capabilities:Application to plunge milling[J]. The International Journal of Advanced Manufacturing Technology,2012,59:47-54. [26] ELBER G,COHEN E,DRAKE S H. MATHSM:Medial axis transform toward high speed machining of pockets[J]. Computer-Aided Design,2005.,37:241-250. [27] IBARAKI S,YAMAJI I,MATSUBARA A. On the removal of critical cutting regions by trochoidal grooving[J]. Precision Engineering-Journal of The International Societies for Precision Engineering and Nanotechnology,2010,34:467-473. [28] NIAKI F A,PLETA A,MEARS L. Trochoidal milling:Investigation of a new approach on uncut chip thickness modeling and cutting force simulation in an alternative path planning strategy[J]. The International Journal of Advanced Manufacturing Technology,2018,97:641-656. [29] 蔡永林,张祥刚,张正中,等. 摆线铣开槽加工切削力分析[J]. 北京交通大学学报,2022,46(3):148-157. CAI Yonglin,ZHANG Xianggang,ZHANG Zhengzhong,et al. Analysis of cutting force in cycloidal milling slotting[J]. Journal of Beijing Jiaotong University,2022,46(3):148-157. [30] 夏青,李洪生. 摆线铣削在硬零件槽铣加工中的应用技术[J]. 防爆电机,2021,56(1):56-58. XIA Qing,LI Hongsheng. Application technology of cycloidal milling in slot milling of hard parts[J]. Explosion Proof Motor,2021,56(1):56-58. [31] GUEZ-ALABANDA O S R I,GUERRERO-VACA G,MOLERO E,et al. Experimental analysis of deep slot milling in EN AW 2024-T3 alloy by stretched trochoidal toolpath and variable helix angle tool[J]. CIRP Journal of Manufacturing Science and Technology,2021,35:346-360. [32] 李斌,吴世雄,王成勇. 高速铣削摆线加工研究[J]. 机械设计与制造,2015(1):220-223. LI Bin,WU Shixiong,WANG Chengyong. Research on cycloidal machining in high speed milling[J]. Mechanical Design and Manufacturing,2015(1):220-223. [33] RAJPUT A S,SINGH A,KAPIL S,et al. Investigations on the trochoidal toolpath for processing the biomaterial through magnetorheological fluid assisted finishing process[J]. Journal of Manufacturing Processes,2022,76:812-817. [34] JIN Tianye,LIU Dehui,CHEN Junyun,et al. Precise and efficient surface flattening of polycrystalline diamond by normal-irradiated trochoidal femtosecond laser machining[J]. Journal of Manufacturing Processes,2022,74:456-464. [35] JIN Tianye,CHEN Junhui,ZHAO Teng,et al. Nanotwinned diamond cutting tool processed by femtosecond pulsed laser milling with trochoidal trajectory[J]. Journal of Materials Processing Technology,2021,294:117115. [36] GROSS D,FRIEDL F,MEIER T,et al. Comparison of linear and trochoidal milling for wear and vibration reduced machining[J]. Procedia CIRP,2020,90:563-567. [37] DUCROUX E,PRAT D,VIPREY F,et al. Analysis and modelling of trochoidal milling in Inconel 718[J]. Procedia CIRP,2019,82:473-478. [38] PLETA A,NIAKI F A,MEARS L. Investigation of chip thickness and force modelling of trochoidal milling[J]. Procedia Manufacturing,2017,10:612-621. [39] PLETA A,MEARS L. Cutting force investigation of trochoidal milling in nickel-based superalloy[J]. Procedia Manufacturing,2016,5:1348-1356.