Journal of Mechanical Engineering ›› 2024, Vol. 60 ›› Issue (3): 83-108.doi: 10.3901/JME.2024.03.083
Previous Articles Next Articles
LIU Huaiju, CHEN Difa, ZHU Caichao, WU Jizan, WEI Peitang
Received:
2023-02-11
Revised:
2023-08-22
Online:
2024-02-05
Published:
2024-04-28
CLC Number:
LIU Huaiju, CHEN Difa, ZHU Caichao, WU Jizan, WEI Peitang. State-of-art and Trend of Gear Bending Fatigue Studies[J]. Journal of Mechanical Engineering, 2024, 60(3): 83-108.
[1] SEABROOK J B, DUDLEY D W. Results of a fifteen-year program of flexural fatigue testing of gear teeth[J]. Journal of Engineering for Industry, 1964, 86(3):221-237. [2] LU Z, LIU H, ZHANG R, et al. The simulation and experiment research on contact fatigue performance of acetal gears[J]. Mechanics of Materials, 2021, 154:103719. [3] ZHANG B, LIU H, BAI H, et al. Ratchetting-multiaxial fatigue damage analysis in gear rolling contact considering tooth surface roughness[J]. Wear, 2019, 428-429:137-146. [4] LIU H, LIU H, ZHU C, et al. Study on gear contact fatigue failure competition mechanism considering tooth wear evolution[J]. Tribology International, 2020, 147:106277. [5] LIU H, LIU H, ZHU C, et al. Influence of load spectrum on contact fatigue damage of a case carburized wind turbine gear[J]. Engineering Failure Analysis, 2021, 119:105005. [6] WEI P, ZHOU H, LIU H, et al. Modeling of contact fatigue damage behavior of a wind turbine carburized gear considering its mechanical properties and microstructure gradients[J]. International Journal of Mechanical Sciences, 2019, 156:283-296. [7] MANDA P, SINGH S, SINGH A K. Failure analysis of cooler fan drive gear system of helicopter[J]. Materials Today:Proceedings, 2018, 5(2):5254-5261. [8] FENG W, FENG Z, MAO L. Failure analysis of a secondary driving helical gear in transmission of electric vehicle[J]. Engineering Failure Analysis, 2020, 117:104934. [9] YAN H, WEI P, ZHOU P, et al. Experimental investigation of crack growth behaviors and mechanical properties degradation during gear bending fatigue[J]. Journal of Mechanical Science and Technology, 2022, 36(3):1233-1242. [10] ISO 6336-3:2019 Calculation of load capacity of spur and helical gears-Part3:Calculation of tooth bending strength[S]. Geneva:International Standard Organization, 2019. [11] AGMA 2101-D04 Fundamental rating factors and calculation methods for involute spur and helical gear teeth[S]. Virginia:American Gear Manufacturers Association, 2016. [12] DIN 3990-3-1987 Calculation of load capacity of cylindrical gears; calculation of tooth strength[S]. Berlin:German Institute for Standardization, 2016. [13] 国国家市场监督管理总局,国家标准化管理委员会. GB/T 3480.3-2021直齿轮和斜齿轮承载能力计算第3部分:轮齿弯曲强度计算[S].北京:中国标准出版社, 2021. State Administration for Market Regulation, Standardization Administration of the People's Republic of China. GB/T 3480.3-2021 Calculation of load capacity of spur and helical gears-Part 3:Calculation of tooth bending strength[S]. Beijing:Standards Press of China, 2021. [14] LEWIS W. Investigation of the strength of gear teeth[J]. American Machinist, 1892, 19-23. [15] OSAKUE E, ANETOR L. Revised lewis bending stress capacity model[J]. The Open Mechanical Engineering Journal, 2020, 14:1-14. [16] AGMA 908-B89 Geometry factors for determining the pitting resistance and bending strength of spur, helical and herringbone gear teeth[S]. Virginia:American Gear Manufacturers Association, 2015. [17] 吴昌林,吕云霏. ISO与AGMA渐开线圆柱齿轮强度计算标准的比较[J].中国机械工程, 2011, 22(12):1418-1423. WU Changlin, LÜ Yunfei. Comparison between ISO and AGMA gear strength rating methods for involute cylindrical gears[J]. China Mechanical Engineering, 2011, 22(12):1418-1423. [18] 吕云霏. ISO与AGMA渐开线圆柱齿轮强度计算标准比较研究[D].武汉:华中科技大学, 2011. LÜ Yunfei. Comparative study of ISO and AGMA gear strength rating methods for involute cylindrical gears[D]. Wuhan:Huazhong University of Science and Technology, 2011. [19] LISLE T J, SHAW B A, FRAZER R C. External spur gear root bending stress:A comparison of ISO 6336:2006, AGMA 2101-D04, ANSYS finite element analysis and strain gauge techniques[J]. Mechanism and Machine Theory, 2017, 111:1-9. [20] LISLE T J, SHAW B A, FRAZER R C. Internal spur gear root bending stress:A comparison of ISO 6336:1996, ISO 6336:2006, VDI 2737:2005, AGMA, ANSYS finite element analysis and strain gauge techniques[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2018, 233(5):1713-1720. [21] 国家市场监督管理总局,国家标准化管理委员会. GB/T 14230-2021齿轮弯曲疲劳强度试验方法[S].北京:中国标准出版社, 2021. State Administration for Market Regulation, Standardization Administration of the People's Republic of China. GB/T 14230-2021 Test method of tooth bending strength for gear load capacity[S]. Beijing:Standards Press of China, 2021. [22] SÁNCHEZ M B, PLEGUEZUELOS M, PEDRERO J I. Tooth-root stress calculation of high transverse contact ratio spur and helical gears[J]. Meccanica, 2014, 49(2):347-64. [23] 刘忠明,袁玉鹏,肖伟中,等.大模数齿条齿根应力计算方法研究及测试[J].机械工程学报, 2016, 52(23):152-159. LIU Zhongming, YUAN Yupeng, XIAO Weizhong, et al. Method of calculation and experiment of bending stress for rough module racks[J]. Journal of Mechanical Engineering, 2016, 52(23):152-159. [24] 喻永权,林超,胡亚楠.不同重合度非圆齿轮设计及弯曲应力分析[J].机械工程学报, 2022, 58(19):206-220. YU Yongquan, LIN Chao, HU Yanan. Design and bending stress analysis of non-circular gears with different contact ratio[J]. Journal of Mechanical Engineering, 2022, 58(19):206-220. [25] 张宝玉,孙铁波,李德才,等.端直面齿轮弯曲应力的解析算法与实验[J].机械设计与研究, 2023, 39(2):90-94. ZHANG Baoyu, SUN Tiebo, LI Decai, et al. Analytical algorithm of bending stress for face gears[J]. Machine Design and Research, 2023, 39(2):90-94. [26] 陈地发,刘怀举,朱加赞,等.低碳合金钢18CrNiMo7-6齿轮弯曲疲劳试验研究与误差分析[J].重庆大学学报, 2023, 44(1):1-15. CHEN Difa, LIU Huaiju, ZHU Jiazan, et al. Experimental study and error analysis on bending fatigue of low carbon alloy steel 18CrNiMo7-6 gear[J]. Journal of Chongqing University, 2023, 44(1):1-15. [27] WELLAUER E J, SEIREG A. Bending strength of gear teeth by cantilever-plate theory[J]. Journal of Engineering for Industry, 1960, 82(3):213-220. [28] HANDSCHUH R F, BIBEL G D. Experimental and analytical study of aerospace spiral bevel gear tooth fillet stresses[J]. Journal of Mechanical Design, 1999, 121(4):565-572. [29] HANDSCHUH M J, KAHRAMAN A, MILLIREN M R. Impact of tooth spacing errors on the root stresses of spur gear pairs[J]. Journal of Mechanical Design, 2014, 136(6):061010. [30] OPALIĆ M, VUČKOVIĆ K, ZEZELJ D. Effect of rotational speed on thin-rim gear bending fatigue crack initiation life[J]. Key Engineering Materials, 2011, 488-489:456-459. [31] HOTAIT M, KAHRAMAN A. Estimation of bending fatigue life of hypoid gears using a multiaxial fatigue criterion[J]. Journal of Mechanical Design, 2013, 135(10):101005. [32] LEWICKI D G, BALLARINI R. Rim thickness effects on gear crack propagation life[J]. International Journal of Fracture, 1997, 87(1):59-86. [33] LEWICKI D. Gear crack propagation path studies:guidelines for ultra-safe design[J]. Journal of the American Helicopter Society, 2001, 47:64-72. [34] LALONDE S, GUILBAULT R. Prediction of thin-rimmed gear crack propagation from a factorial design approach[J]. Fatigue & Fracture of Engineering Materials & Structures, 2011, 34:470-486. [35] PULIKOLLU R, BOLANDER N, SHEN T, et al. microstructure-based fatigue life prediction tool for rotorcraft spiral bevel gears[J]. Annual Forum Proceedings-AHS International, 2013, 3:1933-1942. [36] OJA M, WINK C, DEO N, et al. Gear tooth bending fatigue life prediction using integrated computational material engineering[C]//Proceedings of the ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, August 6-9, 2017, Cleveland, Ohio. New York:ASME, 2017:1-7. [37] WANG W, WEI P, LIU H, et al. Damage behavior due to rolling contact fatigue and bending fatigue of a gear using crystal plasticity modeling[J]. Fatigue & Fracture of Engineering Materials & Structures, 2021, 44(10):2736-2750. [38] HE H, ZHOU Y, LIU H, et al. Study on gear bending fatigue considering gradient characteristics:numerical analysis and experiments[J]. Engineering Fracture Mechanics, 2023, 277:108983. [39] LEI Y, YANG B, JIANG X, et al. Applications of machine learning to machine fault diagnosis:a review and roadmap[J]. Mechanical Systems and Signal Processing, 2020, 138:106587. [40] WANG T, WANG J B, ZHANG X J, et al. A study on prediction of process parameters of shot peen forming using artificial neural network optimized by genetic algorithm[J]. Arabian Journal for Science and Engineering, 2021, 46(8):7349-7361. [41] YANG J, KANG G, LIU Y, et al. A novel method of multiaxial fatigue life prediction based on deep learning[J]. International Journal of Fatigue, 2021, 151:106356. [42] ZHANG M, SUN C, ZHANG X, et al. High cycle fatigue life prediction of laser additive manufactured stainless steel:a machine learning approach[J]. International Journal of Fatigue, 2019, 128:105194. [43] KISHINO M, MATSUMOTO K, KOBAYASHI Y, et al. Fatigue life prediction of bending polymer films using random forest[J]. International Journal of Fatigue, 2023, 166:107230. [44] ZHANG X,GONG J,XUAN F. A deep learning based life prediction method for components under creep, fatigue and creep-fatigue conditions[J]. International Journal of Fatigue, 2021, 148:106236. [45] WEI X, ZHANG C, HAN S, et al. High cycle fatigue S-N curve prediction of steels based on transfer learning guided long short term memory network[J]. International Journal of Fatigue, 2022, 163:107050. [46] ZHOU T, JIANG S, HAN T, et al. A physically consistent framework for fatigue life prediction using probabilistic physics-informed neural network[J]. International Journal of Fatigue, 2023, 166:107234. [47] CHEN D, ZHU J, LIU H, et al. Experimental investigation of the relation between the surface integrity and bending fatigue strength of carburized gear[J]. SCIENCE CHINA Technological Sciences, 2022, 66:33-46. [48] STRINGER D B, DYKAS B, LABERGE K E, et al. A New high-speed, high-cycle, gear-tooth bending fatigue test capability[C]//67th Annual Forum and Technology Display, May 3-5, 2011, Virginia. American Helicopter Society, 2011:1-9. [49] CHEN T, ZHU C, LIU H, et al. Simulation and experiment of carburized gear scuffing under oil jet lubrication[J]. Engineering Failure Analysis, 2022, 139:106406. [50] ZHANG J, ZHANG Q, WU C, et al. Experimental application of pitting formation for 20MnCr5 carburized gear tooth[J]. International Journal of Precision Engineering and Manufacturing, 2014, 15(5):899-903. [51] MAO T, LIU H, WEI P, et al. An improved estimation method of gear fatigue strength based on sample expansion and standard deviation correction[J]. International Journal of Fatigue, 2022, 161:106887. [52] CONRADO E, GORLA C, DAVOLI P, et al. A comparison of bending fatigue strength of carburized and nitrided gears for industrial applications[J]. Engineering Failure Analysis, 2017, 78:41-54. [53] GORLA C, CONRADO E, ROSA F, et al. Contact and bending fatigue behaviour of austempered ductile iron gears[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2017, 232(6):998-1008. [54] LAMBERT R D, AYLOTT C J, SHAW B A. Evaluation of bending fatigue strength in automotive gear steel subjected to shot peening techniques[J]. Procedia Structural Integrity, 2018, 13:1855-1860. [55] LISLE T J, LITTLE C P, AYLOTT C J, et al. Bending fatigue strength of aerospace quality gear steels at ambient and elevated temperatures[J]. International Journal of Fatigue, 2022, 164:107125. [56] WINKLER K J, TOBIE T, STAHL K. Influence of grinding zones on the tooth root bending strength of case carburized gears[J]. Forschung im Ingenieurwesen, 2022, 86(3):661-671. [57] DOBLER F, TOBIE T, STAHL K. Influence of low temperatures on material properties and tooth root bending strength of case-hardened gears[C]//Proceedings of the ASME 2015 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, August 2-5, 2015, Boston, Massachusetts. New York:ASME, 2015:1-9. [58] 周宏宇,刘亚南,王利辉,等.电液伺服脉动疲劳试验加载系统及其应用[J].北京工业大学学报, 2019, 45(03):205-212. ZHOU Hongyu, LIU Yanan, WANG Lihui, et al. Electro-hydraulic servo pulsating fatigue test loading system and its application[J]. Journal of Beijing University of Technology, 2019, 45(03):205-212. [59] OLSSON E, OLANDER A,ÖBERG M. Fatigue of gears in the finite life regime-experiments and probabilistic modelling[J]. Engineering Failure Analysis, 2016, 62:276-286. [60] BLAIS P, TOUBAL L. Single-gear-tooth bending fatigue of HDPE reinforced with short natural fiber[J]. International Journal of Fatigue, 2020, 141:105857. [61] BACKE D, BALLE F, EIFLER D. Fatigue testing of CFRP in the very high cycle fatigue (VHCF) regime at ultrasonic frequencies[J]. Composites Science and Technology, 2015, 106:93-99. [62] 张照智,王伟,冯帆. 40CrNi2Mo中硬调质齿轮弯曲疲劳强度试验研究[J].机械传动, 2005, 29(4):52-55. ZHANG Zhaozhi, WANG Wei, FENG Fan. Experimental study on bending fatigue strength of hardened and tempered 40CrNi2Mo gear[J]. Journal of Mechanical Transmission, 2005, 29(4):52-55. [63] 李政民卿,吴昊,朱如鹏,等.桥式四接触点背对背面齿轮弯曲应力测试机构及测试方法:中国, CN105842083B[P]. 2017-04-19. LI Zhengminqing, WU Hao, ZHU Rupeng, et al. Bridge four contact point back to back gear bending stress test mechanism and test method:China, CN105842083B[P]. 2017-04-19. [64] 王宝宾,许明中,郭明,等.一种斜齿轮单齿弯曲疲劳试验装置:中国, CN212340638U[P]. 2021-01-12. WANG Baobin, XU Mingzhong, GUO Ming, et al. A single tooth bending fatigue test device for helical gear:China, CN212340638U[P]. 2021-01-12. [65] 封楠.渐开线斜齿轮弯曲疲劳强度分析与试验方法研究[D].北京:机械科学研究总院, 2019. FENG Nan. Analysis on bending fatigue stress of involute helical gear and research on test method[D]. Beijing:China Productivity Center for Machinery, 2019. [66] WAGNER M, ISAACSON A, KNOX K, et al. Single tooth bending fatigue testing at any R ratio[J]. Gear Technology, 2021, 5:50-58. [67] HONG I J, KAHRAMAN A, ANDERSON N. A rotating gear test methodology for evaluation of high-cycle tooth bending fatigue lives under fully reversed and fully released loading conditions[J]. International Journal of Fatigue, 2020, 133:105432. [68] LUCA B, MAHMOUD B A B, FRANCO C, et al. Gear root bending strength:a comparison between single tooth bending fatigue tests and meshing gears[J]. Journal of Mechanical Design, 2021, 143(10):103402. [69] BONAITI L, GORLA C. Estimation of gear SN curve for tooth root bending fatigue by means of maximum likelihood method and statistic of extremes[J]. International Journal of Fatigue, 2021, 153:106451. [70] ZHONG B, SONG H, LIU H, et al. Loading capacity of POM gear under oil lubrication[J]. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 2022, 16(1):1-16. [71] LU Z, LIU H, WEI P, et al. The effect of injection molding lunker defect on the durability performance of polymer gears[J]. International Journal of Mechanical Sciences, 2020, 180:105665. [72] 武忠睿,魏沛堂,陈地发,等.铸锭工艺对齿轮弯曲疲劳性能影响的试验研究[J].机械传动, 2023, 47(4):98-107. WU Zhongrui, WEI Peitang, CHEN Difa, et al. Experimental investigation on effect of ingot processing on gear bending fatigue performance[J]. Journal of Mechanical Transmission, 2023, 47(4):98-107. [73] 毛天雨,刘怀举,王宝宾,等.基于分层贝叶斯模型的齿轮弯曲疲劳试验分析[J].中国机械工程, 2021, 32(24):3008-3015. MAO Tianyu, LIU Huaiju, WANG Baobin, et al. Analysis of gear bending fatigue test based on hierarchical bayesian model[J].中国机械工程, 2021, 32(24):3008-3015. [74] 王潇潇.光纤式位移及应力传感器关键技术研究[D].北京:北京邮电大学, 2020. WANG Xiaoxiao. Research on key technologies of fiber-optic displacement and stress sensors[D]. Beijing:Beijing University of Posts and Telecommunications, 2020. [75] 王洪海,李洋洋,徐刚,等.基于FBG的齿根弯曲应力在线检测方法[J].振动测试与诊断, 2017, 37(6):1156-1162. WANG Honghai, LI Yangyang, XU Gang, et al. On-line detection method of tooth root bending stress based on FBG[J]. Journal of Vibration, Measurement & Diagnosis, 2017, 37(6):1156-1162. [76] 艾轶博,耿梦影,吕涛,等.基于声发射的高铁齿轮箱金属材料疲劳损伤分析[[J].铁道科学与工程学报, 2023, 20(2):423-431. AI Yibo, GENG Mengying,LÜ Tao, et al. Fatigue damage analysis of high-speed railway gearbox materials based on acoustic emission[J]. Journal of Railway Science and Engineering, 2023, 20(2):423-431. [77] CRIVELLI D, MCCRORY J, MICCOLI S, et al. Gear tooth root fatigue test monitoring with continuous acoustic emission:advanced signal processing techniques for detection of incipient failure[J]. Structural Health Monitoring, 2017, 17(3):423-433. [78] 刘怀举,张博宇,朱才朝,等.齿轮接触疲劳理论研究进展[J].机械工程学报, 2022, 58(3):95-120. LIU Huaiju, ZHANG Boyu, ZHU Caichao, et al. State of art of gear contact fatigue theories[J]. Journal of Mechanical Engineering, 2022, 58(3):95-120. [79] FUCHS D, SCHURER S, TOBIE T, et al. On the determination of the bending fatigue strength in and above the very high cycle fatigue regime of shot-peened gears[J]. Forschung im Ingenieurwesen, 2021, 86:81-92. [80] ZOU T, SHAKER M, ANGELES J, et al. An innovative tooth root profile for spur gears and its effect on service life[J]. Meccanica, 2017, 52(8):1825-1841. [81] WU J, WEI P, LIU H, et al. Effect of shot peening intensity on surface integrity of 18CrNiMo7-6 steel[J]. Surface and Coatings Technology, 2021, 421:127194. [82] ZHANG X, LIU H, WU S, et al. Experimental investigation on the effect of barrel finishing processes on surface integrity of 18CrNiMo7-6 carburized rollers[J]. Proceedings of the Institution of Mechanical Engineers, Part E:Journal of Process Mechanical Engineering, 2022, 236(5):2095-2105. [83] TOBIE T, HIPPENSTIEL F, MOHRBACHER H. Optimizing gear performance by alloy modification of carburizing steels[J]. Metals, 2017, 7(10):415. [84] MIYACHIKA K, ANDO K, XUE W D, et al. Effects of case depth, side-face carburizing and helix angle on residual stress and bending fatigue strength of case-carburized helical gears[C]//Proceedings of the ASME 2009 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, August 30-September 2, 2009, San Diego, California. New York:ASME, 2009:295-304. [85] PEDERSEN N L. Improving bending stress in spur gears using asymmetric gears and shape optimization[J]. Mechanism and Machine Theory, 2010, 45(11):1707-1720. [86] SANDERS A, HOUSER D R, KAHRAMAN A, et al. An experimental investigation of the effect of tooth asymmetry and tooth root shape on root stresses and single tooth bending fatigue life of gear teeth[C]//Proceedings of the ASME 2011 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, August 28-31, 2011, Washington. New York:ASME, 2011:297-305. [87] DONG P, ZUO S, TENBERGE P, et al. Rapid hob tip corner optimization of spur gears for increasing bending strength[J]. International Journal of Mechanical Sciences, 2022, 224:107322. [88] DOBLER A H, HERGESELL M H, TOBIE T, et al. Increased tooth bending strength and pitting load capacity of fine module gears[J]. Gear technology, 2016, 48-53. [89] CONCLI F. Tooth root bending strength of gears:Dimensional effect for small gears having a module below 5 mm[J]. Applied Sciences, 2021, 11(5):2416. [90] DONG J, PEI W, JI H, et al. Fatigue crack propagation experiment and numerical simulation of 42CrMo steel[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2020, 234(14):2852-2862. [91] ISO 6336-5:2016 Calculation of load capacity of spur and helical gears-Part5:Strength and quality of materials[S]. Geneva:International Standard Organization, 2016. [92] GORLA C, ROSA F, CONRADO E, et al. Bending and contact fatigue strength of innovative steels for large gears[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2014, 228(14):2469-2482. [93] NAGATA T, TAKEMASU T, KOIDE T, et al. Tooth root bending stress analysis of pre-alloyed sintered steel gears with different densities using fem model considering voids[J]. Journal of the Japan Society of Powder and Powder Metallurgy, 2016, 63(7):568-572. [94] BLAIS P, TOUBAL L. Fatigue of short-naturalfiber-reinforced high-density polyethylene:stochastic modeling of single-gear-tooth bending[J]. Fatigue & Fracture of Engineering Materials & Structures, 2021, 44(5):1241-1256. [95] ZORKO D. Investigation on the high-cycle tooth bending fatigue and thermo-mechanical behavior of polymer gears with a progressive curved path of contact[J]. International Journal of Fatigue, 2021, 151:106394. [96] CONCLI F, BONAITI L, GEROSA R, et al. Bending fatigue behavior of 17-4 PH gears produced by additive manufacturing[J]. Applied Sciences, 2021, 11(7):3019. [97] MAENOSONO K, SUGIMOTO T, ISHIBASHI A, et al. GSD-16 impact bending fatigue strength of induction hardened gears made from carbon and alloy steels in comparison with carburized or nitrided gears (gear strength and durability)[C]//The Proceedings of the JSME international conference on motion and power transmissions, November, 14-20, 2001, Fukuoka 2001, I.01.202:237-242. [98] WU J, LIU H, WEI P, et al. Effect of shot peening coverage on residual stress and surface roughness of 18CrNiMo7-6 steel[J]. International Journal of Mechanical Sciences, 2020, 183:105785. [99] PENG C, XIAO Y, WANG Y, et al. Effect of laser shock peening on bending fatigue performance of AISI 9310 steel spur gear[J]. Optics & Laser Technology, 2017, 94:15-24. [100] WANG Z, HUANG Y, XING Z, et al. Bending fatigue behaviour and fatigue endurance limit prediction of 20Cr2Ni4A gear steel after the ultrasonic surface rolling process[J]. Materials, 2021, 14(10):2516. [101] 聂祥樊,李应红,何卫锋,等.航空发动机部件激光冲击强化研究进展与展望[J].机械工程学报, 2021, 57(16):293-305. NIE Xiangfan, LI Yinghong, HE Weifeng, et al. Research progress and prospect of laser shock peening technology in aero-engine components[J]. Journal of Mechanical Engineering, 2021, 57(16):293-305. [102] LI G, BIE W, ZHAO B, et al. Ultrasonic assisted machining of gears with enhanced fatigue resistance:a comprehensive review[J]. Advances in Mechanical Engineering, 2022, 14(4):16878132221082849. [103] ZHANG B, WEI P, LIU H, et al. Effect of fine particle peening on surface integrity of flexspline in harmonic drive[J]. Surface and Coatings Technology, 2022, 433:128133. [104] WEI Y, LI Y, ZHANG Y, et al. Corrosion resistant nickel coating with strong adhesion on AZ31B magnesium alloy prepared by an in-situ shot-peening-assisted cold spray[J]. Corrosion Science, 2018, 138:105-115. [105] SEKI M, SOMEYA H, FUJII M, et al. Rolling contact fatigue life of cavitation-peened steel gear[J]. Tribology Online, 2008, 3:116-121. [106] 李应红,何卫锋,周留成.激光冲击复合强化机理及在航空发动机部件上的应用研究[J].中国科学:技术科学, 2015, 45(1):1-8. LI Yinghong, HE Weifeng, ZHOU Liucheng. The strengthening mechanism of laser shock processing and its application on the aero-engine components[J]. Scientia Sinica (Technologica), 2015, 45(1):1-8. [107] 魏沛堂,吴吉展,吴俊峰,等.航空渗碳齿轮钢滚动接触疲劳及抗疲劳设计研究[C]//第二十一届全国疲劳与断裂学术会议, 8月23, 2022,中国力学学会,中国青岛, 2022:1-2. WEI Peitang, WU Jizhan, WU Junfeng, et al. Research on rolling contact fatigue and anti-fatigue design of aviation carburized gear steel[C]//The 21st National Conference on Fatigue and Fracture, August 23, 2022, The Chinese Society of Theoretical and Applied Mechanics, Qingdao, 2022:1-2. [108] 赵波,姜燕,别文博.超声滚压技术在表面强化中的研究与应用进展[J].航空学报, 2020, 41(10):42-67. ZHAO Bo, JIANG Yan, BIE Wenbo. Ultrasonic rolling technology in surface strengthening:Progress in research and applications[J].航空学报, 2020, 41(10):42-67. [109] 王毅.超声滚压齿轮齿根表面完整性研究[D].焦作:河南理工大学, 2020. WANG Yi. Research on the surface integrity of gear dedendum by ultrasonic rolling[D]. Jiaozuo:Henan Polytechnic University, 2020. [110] 郑建新,罗傲梅,刘传绍.超声表面强化技术的研究进展[J].制造技术与机床, 2012(10):32-36. ZHENG Jianxin, LUO Aomei, LIU Chuanshao. Development of ultrasonic surface enhancement technique[J]. Manufacturing Technology & Machine Tool, 2012(10):32-36. [111] JIANG Y, ZHAO B. Design and experimental study of the rolling-enhanced acoustic system for gear tooth surface[J]. The International Journal of Advanced Manufacturing Technology, 2022, 119(9):6489-6501. [112] ZHANG X, WEI P, PARKER R G, et al. Study on the relation between surface integrity and contact fatigue of carburized gears[J]. International Journal of Fatigue, 2022, 165:107203. [113] 赵鑫,李秀红,李文辉,等.主轴式滚磨光整加工主要参数对力链影响研究[J].机械设计与制造, 2022, 12:113-119. ZHAO Xin, LI Xiuhong, LI Wenhui, et al. Research on influence of main parameters of spindle barrel finishing on force chain[J]. Machinery Design & Manufacture, 2022, 12:113-9. [114] 樊毅啬.齿轮弯曲疲劳强度影响因素分析及试验研究[D].重庆:重庆大学, 2014. FAN Yise. The analysis and experimental research of gear bending fatigue strength influence[D]. Chongqing:Chongqing University, 2014. |
[1] | XIAO Guijian, LIU Zhenyang, HE Yi, LIU Gang, DENG Zhongcai. Laser-assisted CBN Belt Grinding of TC4 Titanium Alloy for Material Removal Behavior and Surface Integrity Study [J]. Journal of Mechanical Engineering, 2024, 60(9): 241-253. |
[2] | HE Zhe, HUANG Xinchun, SONG Yihui, SHI Yaoyao, ZHANG Zhaoqing, SHI Kaining. Study on the Evolution of Surface Integrity of DD6 Single Crystal Super Alloy by Grinding Shot Peening Based on the Effect of Service Temperature [J]. Journal of Mechanical Engineering, 2024, 60(9): 410-420. |
[3] | WANG Pai, BAI Yifan, ZHAO Wenxiang, ZHANG Yibo, LIU Zhibing. Research on Surface Integrity Evolution of Short Arc Assisted Milling of Superalloy [J]. Journal of Mechanical Engineering, 2024, 60(9): 434-444. |
[4] | WU Jizhan, WEI Peitang, WU Shaojie, LIU Huaiju, ZHU Caichao. Rolling Contact Fatigue Performance Prediction and Surface Integrity Optimization of Aviation Gear Steel [J]. Journal of Mechanical Engineering, 2024, 60(8): 81-93. |
[5] | DING Wenfeng, ZHAO Junshuai, ZHANG Honggang, ZHAO Biao, SI Wenyuan, SONG Qiang, HUANG Qingfei. Advances in High Efficiency Precision Grinding and Surface Integrity Control Technology for Gears [J]. Journal of Mechanical Engineering, 2024, 60(7): 350-373. |
[6] | WU Jizhan, WEI Peitang, LIU Huaiju, WU Shaojie, ZHU Caichao. Study on the Correlation between Surface Integrity and Rolling Contact Fatigue Performance of Aviation Gear Steel [J]. Journal of Mechanical Engineering, 2024, 60(4): 284-295. |
[7] | HE Haifeng, LIU Huaiju, ZHU Caichao, LI Gaomeng, CHEN Difa. Quantitative Effect of Residual Stress on Gear Bending Fatigue [J]. Journal of Mechanical Engineering, 2023, 59(4): 53-61. |
[8] | LIU Yihang, ZHOU Li, HAN Xiong, ZHANG Mingliang, GENG Daxi, LIU Lianxing, YIN Xiaoming, JIANG Xinggang, ZHANG Deyuan. Study on Compatibility between Wave-motion Ultrasonic Milling and Post Treatment Process of Ti-6Al-4V [J]. Journal of Mechanical Engineering, 2023, 59(23): 320-330. |
[9] | LI Junjie, REN Zunsong. Load Expansion Method of High-speed Train Frame Based on Fatigue Limit [J]. Journal of Mechanical Engineering, 2023, 59(18): 263-270. |
[10] | ZHOU Suxia, DUAN Suyu, WU Yi, SUN Yuduo, LU Junlin. Multivariate Fatigue Performance Study of 30NiCrMoV12 Defective Axles [J]. Journal of Mechanical Engineering, 2023, 59(14): 237-244. |
[11] | ZHOU Xun, ZHANG Zhentao, GAO Yun, WEI Peng, PAN Jun, CHEN Wenhua. Experimental Study on Fatigue Damage of Aluminum Alloy Stamping Parts [J]. Journal of Mechanical Engineering, 2023, 59(10): 117-123. |
[12] | LIU Huaiju, ZHANG Boyu, ZHU Caichao, WEI Peitang. State of Art of Gear Contact Fatigue Theories [J]. Journal of Mechanical Engineering, 2022, 58(3): 95-120. |
[13] | HUANG Tao, ZHAO Jiaxin, SONG Kexing, ZHANG Xuebin, JIANG Yuning, HAO Liucheng. Fatigue Life Research of Bellows under Coupled Loading of Velocity and External Pressure Based on S-N Curve of Components [J]. Journal of Mechanical Engineering, 2022, 58(20): 269-282. |
[14] | WANG Tengfei, ZHOU Jinsong, JI Yuanjin, WANG Qiushi. Random Vibration Fatigue Analysis of Bogie Based on Pseudo Excitation Method and Master S-N Curve Method in Frequency Domain [J]. Journal of Mechanical Engineering, 2022, 58(12): 140-150. |
[15] | WU Shengchuan, XIE Cheng, HU Yanan, WU Zhengkai, KANG Guozheng. Defect Tolerance Assessment Method of Fusion Welded Medium and High Strength Al Alloy Joints [J]. Journal of Mechanical Engineering, 2020, 56(8): 46-59. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||