[1] 朱大虎,徐小虎,蒋诚,等. 复杂叶片机器人磨抛加工工艺技术研究进展[J]. 航空学报,2021,42(10):8-30. ZHU Dahu,XU Xiaohu,JIANG Cheng,et al. Research progress in robotic grinding technology for complex blades[J]. Acta Aeronautica et Astronautica Sinica,2021,42(10):8-30. [2] ZHU D,FENG X,XU X,et al. Robotic grinding of complex components:A step towards efficient and intelligent machining-challenges,solutions,and applications[J]. Robotics and Computer-Integrated Manufacturing,2020,65:101908. [3] FU Y,GAO H,WANG X,et al. Machining the integral impeller and blisk of aero-engines:A review of surface finishing and strengthening technologies[J]. Chinese Journal of Mechanical Engineering,2017,30(3):528-543. [4] 韩强,詹建明,徐克品,等. 大型曲面柔顺抛光材料去除的理论建模及实验研究[J]. 机械科学与技术,2016,35(11):1709-1714. HAN Qiang,ZHAN Jianming,XU Kepin,et al. Modeling and experimental investigation on the material removal in the large surface compliant polishing process[J]. Mechanical Science and Technology for Aerospace Engineering,2016,35(11):1709-1714. [5] 齐俊德,陈冰. 考虑单磨粒作用的砂带磨削机理模型[J]. 金刚石与磨料磨具工程,2020,40(3):13-20. QI Junde,CHEN Bing. Mechanism model of belt grinding considering single abrasive action[J]. Diamond & Abrasive Engineering,2020,40(3):13-20. [6] 王涛. 航发叶片机器人磨抛材料去除率建模与刀路规划研究[D]. 武汉:华中科技大学,2020. WANG Tao. Research on the modeling of material removal rate and tool path planning of robot grinding and polishing for aero-engine blades[D]. Wuhan:Huazhong University of Science and Technology,2020. [7] 刘斐,王伟,王雷,等. 接触轮变形对机器人砂带磨削深度的影响[J]. 机械工程学报,2017,53(5):86-92. LIU Fei,WANG Wei,WANG Lei,et al. Effect of contact wheel's deformation on cutting depth for robotic belt grinding[J]. Journal of Mechanical Engineering,2017,53(5):86-92. [8] YANG Z,CHU Y,XU X,et al. Prediction and analysis of material removal characteristics for robotic belt grinding based on single spherical abrasive grain model[J]. International Journal of Mechanical Sciences,2021,190:106005. [9] 黄浩杰. 叶片机器人砂带磨削材料去除率预测研究[D]. 武汉:华中科技大学,2020. HUANG Haojie. Study on prediction of material removal rate in robot abrasive belt grinding of blade[D]. Wuhan:Huazhong University of Science and Technology,2020. [10] ZHANG M,CHEN T,TAN Y,et al. An adaptive grinding method for precision-cast blades with geometric deviation[J]. The International Journal of Advanced Manufacturing Technology,2020,108:2349-2365. [11] GAO K,CHEN H,ZHANG X,et al. A novel material removal prediction method based on acoustic sensing and ensemble XGBoost learning algorithm for robotic belt grinding of Inconel 718[J]. The International Journal of Advanced Manufacturing Technology,2019,105(1):217-232. [12] 黄云,肖贵坚,邹莱. 航空发动机叶片机器人精密砂带磨削研究现状及发展趋势[J]. 航空学报,2019,40(03):53-72. HUANG Yun,XIAO Guijian,ZOU Lai. Current situation and development trend of robot precise belt grinding for areo-engine blade[J]. Acta Aeronautica et Astronautica Sinica,2019,40(03):53-72. [13] 黄云. 砂带磨削技术的研究现状和发展方向简介[J]. 金刚石与磨料磨具工程,2020,40(3):1-4. HUANG Yun. Brief introduction of research status and development direction of abrasive belt grinding technology[J]. Diamond & Abrasive Engineering,2020,40(3):1-4. [14] 黄云,李少川,肖贵坚,等. 航空发动机叶片材料及抗疲劳磨削技术现状[J]. 航空材料学报,2021,41(4):17-35. HUANG Yun,LI Shaochuan,XIAO Guijian,et al. Research progress of aero-engine blade materials and anti-fatigue grinding technology[J]. Journal of Aeronautical Materials,2021,41(4):17-35. [15] 李强,雒建斌. 接触力学与摩擦学的原理及其应用[M]. 北京:清华大学出版社,2019. LI Qiang,LUO Jianbin. Principle and application of contact mechanics and tribology[M]. Beijing:Tsinghua University Press,2019. [16] POPOV V L,WILLERT E,HEß M. Method of dimensionality reduction in contact mechanics and friction:A user's handbook. III. Viscoelastic contacts[J]. Facta Universitatis,Series:Mechanical Engineering,2018,16(2):99-113. [17] 钱胜,陆益民,杨咸启,等. 橡胶材料超弹性本构模型选取及参数确定概述[J]. 橡胶科技,2018,16(5):5-10. QIAN Sheng,LU Yimin,YANG Xianqi,et al. Overview of hyperelastic constitutive model selection and parameter determination of rubber materials[J]. Rubber Technology,2018,16(5):5-10. [18] 张琦,时剑文,索双富,等. 基于Mooney-Rivlin模型和Yeoh模型的橡胶材料有限元分析[J]. 合成橡胶工业,2020,43(6):468-471. ZHANG Qi,SHI Jianwen,SUO Shuangfu,et al. Finite element analysis of rubber materials based on Mooney-Rivlin model and Yeoh model[J]. Synthetic Rubber Industry,2020,43(6):468-471. [19] HE Z,LI J,LIU Y,et al. Single-grain cutting based modeling of abrasive belt wear in cylindrical grinding[J]. Friction,2020,8(1):208-220. [20] ARUNACHALAM A P S,IDAPALAPATI S. Material removal analysis for compliant polishing tool using adaptive meshing technique and Archard wear model[J]. Wear,2019,418:140-150. [21] MOONEY M. A theory of large elastic deformation[J]. Journal of Applied Physics,1940,11(9):582-592. |