Prediction Method of Hobbing Carbon Consumption Based on Improved Generative Adversarial Imputation Net with Missing Data
YI Qian1,2, LIU Chun2, LI Congbo1,2, ZHAO Xikun1,2, YI Shuping2
1. State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400044; 2. College of Mechanical and Vehicle Engineering, Chongqing University, Chongqing 400044
YI Qian, LIU Chun, LI Congbo, ZHAO Xikun, YI Shuping. Prediction Method of Hobbing Carbon Consumption Based on Improved Generative Adversarial Imputation Net with Missing Data[J]. Journal of Mechanical Engineering, 2023, 59(11): 264-275.
[1] 中国碳排放数据库.中国分部门核算碳排放清单1997-2019[DB/OL]. [2022-05-10]. https://www.ceads.net/user/index.php?id=913&lang=cn.w.ceads.net/user/index.php?id=913&lang=cn. China Carbon Emission Database. China accounts for carbon emissions by sector 2016-2019[DB/OL]. [2022-05-10]. https://www.ceads.net/user/index.php?id=913&lang=cn.w.ceads.net/user/index.php?id=913&lang=cn. [2] 李聪波,付松,陈行政,等. 面向高效节能的数控滚齿加工参数多目标优化模型[J]. 计算机集成制造系统,2020,26(3):676-687. LI Congbo,FU Song,CHEN Xingzheng,et al. Multi-objective CNC gear hobbing parameters optimization model for high efficiency and energy saving[J]. Computer Integrated Manufacturing Systems,2020,26(3):676-687. [3] 倪恒欣,阎春平,陈建霖,等. 高速干切滚齿工艺参数的多目标优化与决策方法[J]. 中国机械工程,2021,32(7):832-838. NI Hengxin,YAN Chunping,CHEN Jianlin,et al. Multi-objective optimization and decision-making method of high speed dry gear hobbing process parameters[J]. China Mechanical Engineering,2021,32(7):832-838. [4] CHEN Xingzhen,LI Congbo,TANG Ying,et al. Integrated optimization of cutting tool and cutting parameters in face milling for minimizing energy footprint and production time[J]. Energy,2019,175:1021-1037. [5] PRIARONE P C,ROBIGLIO M,SETTINERI L,et al. Modelling of specific energy requirements in machining as a function of tool and lubricoolant usage[J]. CIRP Annals - Manufacturing Technology,2016:25-28. [6] ALBERTELLI P,KESHARI A,MATTA A. Energy oriented multi cutting parameter optimization in face milling[J]. Journal of Cleaner Production,2016,137:1602-1618. [7] 易茜,柳淳,李聪波,等. 基于小样本数据驱动的滚齿工艺参数低碳优化决策方法[J]. 中国机械工程,2022,33(13):1604-1612. YI Qian,LIU Chun,LI Congbo,et al. A low carbon optimization decision method for gear hobbing process parameters driven by small sample data[J]. China Mechanical Engineering,2022,33(13):1604-1612. [8] BHIHGE R,PARK J,LAW K H,et al. Toward a generalized energy prediction model for machine tools[J]. Journal of Manufacturing Science & Engineering,2017,139(4):041013 [9] NGUYEN T. Prediction and optimization of machining energy,surface roughness,and production rate in SKD61 milling[J]. Measurement,2019,136:525-544. [10] XIAO Qinge,LI Congbo,TANG Ying,et al. Energy efficiency modeling for configuration-dependent machining via machine learning:A comparative study[J]. IEEE Transactions on Automation Science and Engineering,2021,18:717-730. [11] GUO Z,WAN Y,YE H. A data imputation method for multivariate time series based on generative adversarial network[J]. Neurocomputing,2019,360. [12] PAN Jian,LI Congbo,TANG Ying,et al. Energy consumption prediction of a CNC machining process with incomplete data[J]. IEEE/CAA Journal of Automatica Sinica,2021,8(5):987-1000. [13] 蓝艇,朱莹,俞海珍,等. 基于缺失数据的误差生成策略及其在故障检测中的应用[J]. 控制与决策,2020,35(2):396-402. LAN Ting,ZHU Ying,YU Haizhen,et al. Missing data based method for residual generation and its application for fault detection[J]. Control and Decision,2020,35(2):396-402. [14] AFIFI A A,ELASHOFF R M. Missing observations in multivariate statistics I:Review of the literature[J]. Journal of the American Statistical Association,1966,61(315):595-604. [15] YOON J,JORDON J,SCHAAR M. GAIN:Missing data imputationusing generative adversarial Nets[C]// Proceedings of the 35th International Conference on Machine Learning. Sweden,2018:5689-5698. [16] 王立平,张兆坤,邵珠峰,等. 机床制造加工数字化车间信息模型及其应用研究[J]. 机械工程学报,2019,55(9):154-165. WANG Liping,ZHANG Zhaokun,SHAO Zhufeng,et al. Research on the information model of digital machining workshop for machine tools and its applications[J]. Journal of Mechanical Engineering,2019,55(9):154-165. [17] TSENG H Y,JIANG L,LIU C,et al. Regularizing generative adversarial networks under limited data[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),Nashville,2021:7917-7927. [18] XIAO Qinge,LI Congbo,TANG Ying,et al. Multi-component energy modeling and optimization for sustainable dry gear hobbing[J]. Energy,2019,187(2):115911. [19] SCHUDELEIT T,ZUST T S,WEISS L,et al. The total energy efficiency index for machine tools[J]. Energy,2016,102:682-693. [20] 李爱平,古志勇,朱璟,等. 基于低碳制造的多工步孔加工切削参数优化[J]. 计算机集成制造系统,2015,21(6):1515-1522. LI Aiping,GU Zhiyong,ZHU Jing,et al. Optimization of cutting parameters for multi-pass hole machining based on low carbon manufacturing[J]. Computer Integrated Manufacturing Systems,2015,21(6):1515-1522. [21] 汪千程,苏春,文泽军. 基于协整分析的风力机多工况监测与故障诊断[J]. 中国机械工程,2022,33(13):1596-160. WANG Qiancheng,SU Chun,WEN Zejun,Multi-condition monitoring and fault diagnosis of wind turbines based on cointegration analysis[J]. China Mechanical Engineerin,2022,33(13):1596-160. [22] 常玉清,孙雪婷,钟林生,等. 基于改进随机森林算法的工业过程运行状态评价[J]. 自动化学报,2021,47(9):2214-2225. CHANG Yuqing,SUN Xueting,ZHONG Linsheng,et al. Industrial operation performance evaluation of industrial processes based on modified random forest[J]. Acta Automatica Sinica,2021,47(9):2214-2225.