[1] ABRAMOWICZ W. Thin-walled structures as impact energy absorbers[J]. Thin-Walled Structures, 2003, 41(2-3):91-107. [2] BAROUTAJI A, SAJJIA M, OLABI A. On the crashworthiness performance of thin-walled energy absorbers:Recent advances and future developments[J]. Thin-Walled Structures, 2017, 118:137-163. [3] FANG J, SUN G, QIU N, et al. On design optimization for structural crashworthiness and its state of the art[J]. Structural and Multidisciplinary Optimization, 2017, 55(3):1091-1119. [4] TRAN T, HOU S, HAN X, et al. Theoretical prediction and crashworthiness optimization of multi-cell triangular tubes[J]. Thin-Walled Structures, 2014, 82:183-195. [5] FANG J, GAO Y, SUN G, et al. On design of multi-cell tubes under axial and oblique impact loads[J]. Thin-Walled Structures, 2015, 95:115-126. [6] WANG Z, LIU J, SONG Y. On folding mechanics of multi-cell thin-walled square tubes[J]. Composites Part B Engineering, 2018, 132:17-27. [7] MAHMOODI A, SHOJAEEFARD M H, SAEIDI G H. Theoretical development and numerical investigation on energy absorption behavior of tapered multi-cell tubes[J]. Thin-Walled Structures, 2016, 102:98-110. [8] TANG Z, LIU S, ZHANG Z. Analysis of energy absorption characteristics of cylindrical multi-cell columns[J]. Thin-Walled Structures, 2013, 62:75-84. [9] ZHANG Y, WANG J, WANG C, et al. Crashworthiness of bionic fractal hierarchical structures[J]. Materials & Design, 2018, 158:147-159. [10] XU X, ZHANG Y, WANG J, et al. Crashworthiness design of novel hierarchical hexagonal columns[J]. Composite Structures, 2018, 194:36-48. [11] ZHANG L, BAI Z, BAI F. Crashworthiness design for bio-inspired multi-cell tubes with quadrilateral, hexagonal and octagonal sections[J]. Thin-Walled Structures, 2018, 122:42-51. [12] QIN R, WANG X, GAO F, et al. Energy absorption performance of hexagonal multi-cell tube with hierarchy under axial loading[J]. Thin-Walled Structures, 2021, 169:108392. [13] LI W, LUO Y, MING L, et al. A more weight-efficient hierarchical hexagonal multi-cell tubular absorber[J]. International Journal of Mechanical Sciences, 2018, 140:S79737962. [14] YIN H, HUANG X, SCARPA F, et al. In-plane crashworthiness of bio-inspired hierarchical honeycombs[J]. Composite Structures, 2018, 192(C):516-527. [15] CHEN Y, LI T, JIA Z, et al. 3D printed hierarchical honeycombs with shape integrity under large compressive deformations[J]. Materials & Design, 2018, 137:226-234. [16] LUO Y, FAN H. Energy absorbing ability of rectangular self-similar multi-cell sandwich-walled tubular structures[J]. Thin-Walled Structures, 2018, 124:88-97. [17] ALAVI N A, HADDAD H J. Comparative analysis of energy absorption and deformations of thin walled tubes with various section geometries[J]. Thin-Walled Structures, 2010, 48(12):946-954. [18] ANDREWS E R F, ENGLAND G L. GHANI E. Classification of the axial collapse of cylindrical tubes under quasi-static loading[J]. International Journal of Mechanical Sciences, 1983, 25:9-10. [19] ALAVI N A, PARSAPOUR M. An investigation on the energy absorption characteristics of multi-cell square tubes[J]. Thin-Walled Structures, 2013, 68:26-33. [20] CHEN W, WIERZBICKI T. Relative merits of single-cell, multi-cell and foam-filled thin-walled structures in energy absorption[J]. Thin-Walled Structures, 2001, 39(4):287-306. [21] ZHANG Z, LIU S, TANG Z. Crashworthiness investigation of kagome honeycomb sandwich cylindrical column under axial crushing loads[J]. Thin-Walled Structures, 2010, 48(1):9-18. [22] SUN G, PANG T, FANG J. Parameterization of criss-cross configurations for multiobjective crashworthiness optimization[J]. International Journal of Mechanical Sciences, 2017, 124/125:145-157. [23] ZHANG Y, XU X, SUN G, et al. Nondeterministic optimization of tapered sandwich column for crashworthiness[J]. Thin-Walled Structures, 2018, 122:193-207. [24] BAYKASOGLU C, CETIN M T. Energy absorption of circular aluminium tubes with functionally graded thickness under axial impact loading[J]. International Journal of Crashworthiness, 2015, 20(1):95-106. [25] ZHANG D, LU G, RUAN D, et al. Energy absorption in the axial crushing of hierarchical circular tubes[J]. International Journal of Mechanical Sciences, 2020, 171:105403. [26] SANTOSA S P, WIERZBICKI T. Experimental and numerical studies of foam-flled sections[J]. International Journal of Mechanical Sciences, 2000, 24:509-534. [27] TABACU S. Axial crushing of circular structures with rectangular multi-cell insert[J]. Thin-Walled Structures, 2015, 95:297-309. [28] ZHANG X, ZHANG H. Energy absorption of multi-cell stub columns under axial compression[J]. Thin-Walled Structures, 2013, 68:156-163. [29] ZHANG X, ZHANG H. Theoretical and numerical investigation on the crush resistance of rhombic and kagome honeycombs[J]. Composite Structures, 2013, 96:143-152. [30] JONES N. Energy-absorbing effectiveness factor[J]. International Journal of Impact Engineering, 2010, 37(6):754-765. [31] HE Q, MA D. Mean compressive stress constitutive equation and crashworthiness optimization design of three novel honeycombs under axial compression[J]. International Journal of Impact Engineering, 2015, 99:274-287. [32] WIERZBICKI T, ABRAMOWICZ W. On the crushing mechanics of thin-walled structures[J]. Journal of Applied Mechanics, 1983, 50(4a):727-734. |