Journal of Mechanical Engineering ›› 2022, Vol. 58 ›› Issue (15): 31-45.doi: 10.3901/JME.2022.15.031
Previous Articles Next Articles
LU Shouxiang1, YANG Xiuxuan2, ZHANG Jianqiu1, ZHOU Cong1, YIN Jingfei3, ZHANG Bi1
Received:
2021-09-08
Revised:
2021-12-28
Published:
2022-10-13
CLC Number:
LU Shouxiang, YANG Xiuxuan, ZHANG Jianqiu, ZHOU Cong, YIN Jingfei, ZHANG Bi. Rational Discussion on Material Removal Mechanisms and Machining Damage of Hard and Brittle Materials[J]. Journal of Mechanical Engineering, 2022, 58(15): 31-45.
[1] 王建斌, 周立波.化学机械磨削(CMG)加工单晶硅片[J].人工晶体学报, 2018, 47(4):715-720.WANG Jianbin, ZHOU Libo. Introduction of chemical mechanical grinding(CMG) on single crystal silicon wafer[J]. Journal of Synthetic Crystals, 2018, 47(4):715-720. [2] 张福生, 杨昆, 刘新辉, 等.无微管缺陷六英寸Si C单晶的制备[J].硅酸盐学报, 2021, 49(4):1-7.ZHANG Fusheng, YANG Kun, LIU Xinhui, et al. Growth of six inches SiC single crystals with out zero micropipe defects[J]. Journal of the Chinese ceramic society, 2021, 49(4):1-7. [3] 王紫光, 康仁科, 周平, 等.单晶硅反射镜的超精密磨削工艺[J].光学精密工程, 2019, 27(5):1087-1095.WANG Ziguang, KANG Renke, ZHOU Ping, et al.Ultra-precision grinding of monocrystalline silicon reflector[J]. Optics and Precision Engineering, 2019, 27(5):1087-1095. [4] 张剑寒, 张宇民, 韩杰才, 等.空间反射镜材料性能的研究[J].材料导报, 2006, 20(2):5-9.ZANG Jianhan, ZHANG Yumin, HAN Jiecai, et al. Study of space mirror material properties[J]. Materials Review, 2006, 20(2):5-9. [5] 陈芬, 吴亚茹, 朱皓, 等.氧化锆生物陶瓷的立体光固化制备及其力学与生物性能[J].硅酸盐学报, 2021, 49(9):1-9.CHEN Fen, WU Yaru, ZHU Hao, et al. Mechanical and biological properties of ZrO2 bioceramics by stereolithography technique[J]. Journal of the Chinese Ceramic Society, 2021, 49(9):1-9. [6] GAO P, LIANG Z, WANG X, et al. Cutting edge damage in grinding of cemented carbides micro end mills[J].Ceramics International, 2017, 43(14):11331-11338. [7] BIFANO T J, DOW T A, SCATTERGOOD R O.Ductile-regime grinding-a new technology for machining brittle materials[J]. Journal of Engineering for Industry-Transactions of the ASME, 1991, 113(2):184-189. [8] YANG M, LI C H, ZHANG Y B, et al. Effect of friction coefficient on chip thickness models in ductile-regime grinding of zirconia ceramics[J]. International Journal of Advanced Manufacturing Technology, 2019, 102(5-8):2617-2632. [9] HUANG H, LI X L, MU D K, et al. Science and art of ductile grinding of brittle solids[J]. International Journal of Machine Tools&Manufacture, 2021, 161:103675. [10] HUANG H, LAWN B R, COOK R F, et al. Critique of materials-based models of ductile machining in brittle solids[J]. Journal of the American Ceramic Society, 2020, 103(11):6096-6100. [11] DAI J B, SU H H, YU T F, et al. Experimental investigation on materials removal mechanism during grinding silicon carbide ceramics with single diamond grain[J]. Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology, 2018, 51:271-279. [12] SINGH A, SOLANKI D, SENCHA R, et al. Study and characterization of the ductile-brittle transition zone in sintered zirconia[J]. Journal of Manufacturing Processes, 2020, 58:749-762. [13] YANG M, LI C H, ZHANG Y B, et al. Maximum undeformed equivalent chip thickness for ductile-brittle transition of zirconia ceramics under different lubrication conditions[J]. International Journal of Machine Tools&Manufacture, 2017, 122:41-51. [14] MA L J, YU A B, GU L C, et al. Mechanism of compound fracture and removal in grinding process for low-expansion glass ceramics[J]. International Journal of Advanced Manufacturing Technology, 2017, 91(5-8):2303-2313. [15] WIRTZ C, MUELLER S, MATTFELD P, et al. A discussion on material removal mechanisms in grinding of cemented carbides[J]. Journal of Manufacturing Science and Engineering-Transactions of the ASME, 2017, 139(12):121002. [16] WU J, CHENG J, GONG Y D. A study on material removal mechanism of ultramicro-grinding(UMG) considering tool parallel run-out and deflection[J].International Journal of Advanced Manufacturing Technology, 2019, 103(1-4):631-653. [17] LIU Y, LI B Z, WU C J, et al. Smoothed particle hydrodynamics simulation and experimental analysis of SiC ceramic grinding mechanism[J]. Ceramics International, 2018, 44(11):12194-12203. [18] LAWN B R, JENSEN T, ARORA A. Brittleness as an indentation size effect[J]. Journal of Materials Science, 1976, 11(3):573-575. [19] KIYASHKO M V, GRINCHUK P S, KUZNETSOVA T A, et al. Determination of elastic modulus of SiC-based composite ceramics[J]. Technical Physics Letters, 2021, 47(2):150-153. [20] CHEN P W, CHEN J J, GUO B Q, et al. Measurement of the dynamic fracture toughness of alumina ceramic[M]//SONG B, LAMBERSON L, CASEM D, et al.Dynamic Behavior of Materials, 2016, 1:33-38. [21] HU X, WANG F C, WANG Y W, et al. Effect of confined stress on dynamic hardness of ceramic AD95[J]. Rare Metal Materials and Engineering, 2009, 38:1164-1166. [22] BRANCH N A, SUBHASH G, ARAKERE N K, et al.Material-dependent representative plastic strain for the prediction of indentation hardness[J]. Acta Materialia, 2010, 58(19):6487-6494. [23] SHAW M C, COOKSON J O. Metal cutting principles[M].New York:Oxford university press, 2005. [24] ZHANG B, TOKURA H, YOSHIKAWA M. Study on surface cracking of alumina scratched by single-point diamonds[J]. Journal of Materials Science, 1988, 23(9):3214-3224. [25] ZHANG B, HOWES T D. Material-removal mechanisms in grinding ceramics[J]. CIRP Annals-Manufacturing Technology, 1994, 43(1):305-308. [26] ZHANG B, ZHENG X L, TOKURA H, et al. Grinding induced damage in ceramics[J]. Journal of Materials Processing Technology, 2003, 132(1-3):353-364. [27] LARSEN D C. Ceramic Materials for Advanced Heat Engines[M]. Park Ridge:Noyes Publications, 1985. [28] WANG W, WANG Z, YAO P, et al. Ductile-brittle transition mechanisms of amorphous glass subjected to taper grinding experiment[J]. Ceramics International, 2021, 47(2):1844-1854. [29] RAO X S, ZHANG F H, LUO X C, et al. Material removal mode and friction behaviour of RB-SiC ceramics during scratching at elevated temperatures[J]. Journal of the European Ceramic Society, 2019, 39(13):3534-3545. [30] WANG Y C, ZHANG W, WANG L Y, et al. In situ TEM study of deformation-induced crystalline-to-amorphous transition in silicon[J]. NPG Asia Materials, 2016, 8:1-7. [31] FANG F Z, WU H, ZHOU W, et al. A study on mechanism of nano-cutting single crystal silicon[J].Journal of Materials Processing Technology, 2007, 184(1-3):407-410. [32] ZHANG Q L, TO S, ZHAO Q L, et al. Recrystallization of amorphized Si during micro-grinding of RB-SiC/Si composites[J]. Materials Letters, 2016, 172:48-51. [33] ZHANG Z Y, WANG B, KANG R K, et al. Changes in surface layer of silicon wafers from diamond scratching[J].CIRP Annals-Manufacturing Technology, 2015, 64(1):349-352. [34] STOKES R J, JOHNSTON T L, LI C H. Crack formation in magnesium oxide single crystals[J]. Philosophical Magazine, 1958, 3(31):718-725. [35] YIN J F, BAI Q, GOEL S, et al. An analytical model to predict the depth of sub-surface damage during grinding of brittle materials[J]. CIRP-Journal of Manufacturing Science and Technology, 2021, 33:454-464. [36] YAN J W, ASAMI T, HARADA H, et al. Fundamental investigation of subsurface damage in single crystalline silicon caused by diamond machining[J]. Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology, 2009, 33(4):378-386. [37] WU Y Q, HUANG H, ZOU J, et al. Nanoscratch-induced deformation of single crystal silicon[J]. Journal of Vacuum Science&Technology B, 2009, 27(3):1374-1377. [38] ZHANG Z Y, HUO Y X, GUO D M. A model for nanogrinding based on direct evidence of ground chips of silicon wafers[J]. Science China-Technological Sciences, 2013, 56(9):2099-2108. [39] WANG B, LIU Z Q, SU G S, et al. Brittle removal mechanism of ductile materials with ultrahigh-speed machining[J]. Journal of Manufacturing Science and Engineering-Transactions of the ASME, 2015, 137(6):061002. [40] YANG X, ZHANG B. Material embrittlement in high strain-rate loading[J]. International Journal of Extreme Manufacturing, 2019, 1(2):022003. [41] HOLMQUIST T J, JOHNSON G R. A computational constitutive model for glass subjected to large strains, high strain rates and high pressures[J]. Journal of Applied Mechanics-Transactions of the ASME, 2011, 78(5):051003. [42] 姜峰, 李子沐, 王宁昌, 等.高应变率条件下山西黑花岗岩的动态力学性能研究[J].振动与冲击, 2016, 35(8):177-182.JIANG Feng, LI Zimu, WANG Ningchang, et al.Research on dynamic characteristics of Shanxi black granite under high strain rates[J]. Journal of Vibration and Shock, 2016, 35(8):177-182. [43] 汤佳妮, 徐便, 郑宇轩, 等.脆性膨胀环动态拉伸碎裂实验研究[J].爆炸与冲击, 2021, 41(1):96-104.TANG Jiani, XU Bian, ZHENG Yuxuan, et al.Experimental study for dynamic fragmentation of brittle expansion rings[J]. Explosion and Shock Waves, 2021, 41(1):96-104. [44] WANG B, LIU Z Q, SU G S, et al. Investigations of critical cutting speed and ductile-to-brittle transition mechanism for workpiece material in ultra-high speed machining[J]. International Journal of Mechanical Sciences, 2015, 104:44-59. [45] ZHANG B, YIN J. The ‘skin effect’ of subsurface damage distribution in materials subjected to high-speed machining[J]. International Journal of Extreme Manufacturing, 2019, 1(1):012007. [46] LV D X, HUANG Y H, WANG H X, et al. Improvement effects of vibration on cutting force in rotary ultrasonic machining of BK7 glass[J]. Journal of Materials Processing Technology, 2013, 213(9):1548-1557. [47] AHMED Y, CONG W L, STANCO M R, et al. Rotary ultrasonic machining of alumina dental ceramics:a preliminary experimental study on surface and subsurface damages[J]. Journal of Manufacturing Science and Engineering-Transactions of the ASME, 2012, 134(6):064501. [48] ZHANG L C, ZARUDI I. Towards a deeper understanding of plastic deformation in mono-crystalline silicon[J]. International Journal of Mechanical Sciences, 2001, 43(9):1985-1996. [49] LIU X B, ZHANG B, DENG Z H. Grinding of nanostructured ceramic coatings:Surface observations and material removal mechanisms[J]. International Journal of Machine Tools&Manufacture, 2002, 42(15):1665-1676. [50] 范继美, 万光珉.位错理论及其在金属切削中的应用[M].上海:上海交通大学出版社, 1991.FAN Jimei, WAN Guangmin. Dislocation theory and its application in metal cutting[M]. Shanghai:Shanghai Jiaotong University Press, 1991. [51] ZHANG S H, LEGUT D, ZHANG R F. PNADIS:An automated Peierls-Nabarro analyzer for dislocation core structure and slip resistance[J]. Computer Physics Communications, 2019, 240:60-73. [52] KORTE S, BARNARD J S, STEAM R J, et al.Deformation of silicon-Insights from microcompression testing at 25-500 degrees C[J]. International Journal of Plasticity, 2011, 27(11):1853-1866. [53] XIE G Z, HUANG H. An experimental investigation of temperature in high speed deep grinding of partially stabilized zirconia[J]. International Journal of Machine Tools&Manufacture, 2008, 48(14):1562-1568. [54] PAUL S, CHATTOPADHYAY A B. Effects of cryogenic cooling by liquid-nitrogen jet on forces, temperature and surface residual-stresses in grinding steels[J]. Cryogenics, 1995, 35(8):515-523. [55] SINGH V, GHOSH S, RAO P V. Grindability Improvement of AlSiTi Conductive Ceramic[J]. Materials and Manufacturing Processes, 2012, 27(2):214-220. [56] LI Z P, ZHANG F H, LUO X C, et al. Material removal mechanism of laser-assisted grinding of RB-SiC ceramics and process optimization[J]. Journal of the European Ceramic Society, 2019, 39(4):705-717. [57] BOWMAN K J, PFEFFERKORN F E, SHIN Y C.Recrystallization textures during laser-assisted machining of zirconia ceramics[M]//LEE D N. Textures of Materials, Pts 1 and 2. 2002:1669-1674. [58] AZARHOUSHANG B, SOLTANI B, ZAHEDI A.Laser-assisted grinding of silicon nitride by picosecond laser[J]. International Journal of Advanced Manufacturing Technology, 2017, 93(5-8):2517-2529. [59] MA Z L, WANG Z, WANG X Z, et al. Effects of laser-assisted grinding on surface integrity of zirconia ceramic[J]. Ceramics International, 2020, 46(1):921-929. [60] 余同希.工程材料及其力学行为[M].长沙:湖南教育出版社, 1992.YU Tongxi. Engineering materials and their mechanical behavior[M]. Changsha:Hunan Education Press, 1992. [61] STROH A N. The formation of cracks as a result of plastic flow[J]. Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences, 1954, 223(1154):404-414. [62] MEYERS M A, BENSON D J, VOHRINGER O, et al.Constitutive description of dynamic deformation:Physically-based mechanisms[J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2002, 322(1-2):194-216. [63] ZHANG T, JIANG F, HUANG H, et al. Towards understanding the brittle-ductile transition in the extreme manufacturing[J]. International Journal of Extreme Manufacturing, 2021, 3(2):022001. [64] SIVARAMAKRISHNAN V. Predictive modeling for ductile machining of brittle materials[D]. Atlanta:Georgia Institute of Technology, 2007. [65] 李蓓智.高速高质量磨削:理论、工艺、装备与应用[M].上海:上海科学技术出版社, 2012.LI Beizhi. High speed and high quality grinding:Theory, technology, equipment and application[M]. Shanghai:Shanghai Science and Technology Press, 2012. [66] ASTAKHOV V P, XIAO X R. A methodology for practical cutting force evaluation based on the energy spent in the cutting system[J]. Machining Science and Technology, 2008, 12:325-347. [67] ASTAKHOV V P. Geometry of single-point turning tools and drills:Fundamentals and practical applications[M].London:Springer, 2010. [68] WOBKER H G. Schleifen keramischer werkstoffe[D].Hanover:University of Hanover, 1992. [69] 谢桂芝, 黄红武, 黄含, 等.工程陶瓷材料高效深磨的试验研究[J].机械工程学报, 2007, 43(1):176-184.XIE Guizhi, HUANG Hongwu, HUANG Han, et al.Experimental investigations of advanced ceramics in high efficiency deep grinding[J]. Journal of Mechanical Engineering, 2007, 43(1):176-184. [70] SALOMON C. Verfahren zur Bearbeitung von Metallen oder bei einer Bearbeitung durch schneidende Werkzeuge sichähnlich verhaltenden Werkstoffen:DE. 1931-04-27.SALOMON C. Methods for processing metals or materials that behave similarly when processed with cutting tools:DE, 1931-04-27. |
[1] | SU Zhipeng, LIANG Zhiqiang, LI Juan, WANG Fei, WEI Zhengyi, LIU Yuehong, KIM Yoomi, MA Yue, YIN Zhen, WANG Xibin. Experimental Research on Ultrasonic Spiral Assisted Milling and Grinding of Titanium Alloy Micro Groove [J]. Journal of Mechanical Engineering, 2024, 60(9): 5-12. |
[2] | DONG Zhigang, WANG Zhongwang, RAN Yichuan, BAO Yan, KANG Renke. Advances in Ultrasonic Vibration-assisted Milling of Carbon Fiber Reinforced Ceramic Matrix Composites [J]. Journal of Mechanical Engineering, 2024, 60(9): 26-56. |
[3] | YIN Zhen, ZHANG Kun, DAI Chenwei, CHENG Jingcai, XUN Hailong, LI Hua. Research on Wheel Wear and Grinding Performance of Elliptical Ultrasonic Vibration Assisted Grinding SiC Ceramics [J]. Journal of Mechanical Engineering, 2024, 60(9): 57-74. |
[4] | LIANG Fengshuang, WU Mingyang, LIU Lifei. Research on Mechanism and Subsurface Damage Characteristics of SiC Ultrasonic Grinding Based on Material Impact Characteristics [J]. Journal of Mechanical Engineering, 2024, 60(9): 75-85. |
[5] | LI Han, ZHANG Cheng, CHEN Jie, AN Qinglong, CHEN Ming. Material Removal Mechanism and Evaluation of Machined Surface Quality of SiCf/SiC Composites by Laser Ablation-assisted Milling [J]. Journal of Mechanical Engineering, 2024, 60(9): 206-217. |
[6] | HAO Mingwu, YAO Peng, ZHOU Jiabin, LI Yueming, LIANG Shitong, CHU Dongkai, HUANG Chuanzhen. The Influencing Factors of Tangential Dressing of Bronze-bond Diamond Grinding Wheel by Picosecond Pulsed Laser [J]. Journal of Mechanical Engineering, 2024, 60(9): 229-240. |
[7] | XIAO Guijian, LIU Zhenyang, HE Yi, LIU Gang, DENG Zhongcai. Laser-assisted CBN Belt Grinding of TC4 Titanium Alloy for Material Removal Behavior and Surface Integrity Study [J]. Journal of Mechanical Engineering, 2024, 60(9): 241-253. |
[8] | WANG Xiaoming, LI Changhe, YANG Min, ZHANG Yanbin, LIU Mingzheng, GAO Teng, CUI Xin, WANG Dazhong, CAO Huajun, CHEN Yun, LIU Bo. Research Progress on the Physical Mechanism of Minimum Quantity Lubrication Machining with Nano-biolubricants [J]. Journal of Mechanical Engineering, 2024, 60(9): 286-322. |
[9] | CUI Xin, LI Changhe, ZHANG Yanbin, YANG Min, ZHOU Zongming, LIU Bo, WANG Chunjin. Force Model and Verification of Magnetic Traction Nanolubricant Grinding [J]. Journal of Mechanical Engineering, 2024, 60(9): 323-337. |
[10] | GUAN Jiju, ZHU Zhengbing, XU Zhengya, LUAN Zhiqiang, XU Xuefeng. Dual Synergistic Lubrication Mechanism of Nano-fluid and Grinding Wheel Prepared by CNTs@T321 Nano-capsules [J]. Journal of Mechanical Engineering, 2024, 60(9): 351-363. |
[11] | HE Zhe, HUANG Xinchun, SONG Yihui, SHI Yaoyao, ZHANG Zhaoqing, SHI Kaining. Study on the Evolution of Surface Integrity of DD6 Single Crystal Super Alloy by Grinding Shot Peening Based on the Effect of Service Temperature [J]. Journal of Mechanical Engineering, 2024, 60(9): 410-420. |
[12] | DENG Jianxin, YUAN Bangyi, HUANG Qiulin, DING Dukun, XIN Manyu, LIU Guangming. Review on the Key Technologies of Complex Surfaces Polishing Based on Robots [J]. Journal of Mechanical Engineering, 2024, 60(7): 1-21. |
[13] | DING Wenfeng, ZHAO Junshuai, ZHANG Honggang, ZHAO Biao, SI Wenyuan, SONG Qiang, HUANG Qingfei. Advances in High Efficiency Precision Grinding and Surface Integrity Control Technology for Gears [J]. Journal of Mechanical Engineering, 2024, 60(7): 350-373. |
[14] | HE Qingshan, XIE Yongchen, CUI Zhongming, FU Yucan. Development of the Phase Change Heat Storage Composite Wheel for Green Grinding of Difficult-to-cut Materials [J]. Journal of Mechanical Engineering, 2024, 60(3): 405-414. |
[15] | WANG Dexiang, ZHANG Yu, JIANG Jingliang, LIU Xinfu, LIU Guoliang. Tribological Mechanism on the Grinding Interface of Nickel-base Superalloy under Minimum Quantity Lubrication with Ionic Liquid and Palm Oil Based Nanofluids [J]. Journal of Mechanical Engineering, 2024, 60(19): 159-171. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||