Journal of Mechanical Engineering ›› 2022, Vol. 58 ›› Issue (12): 197-212.doi: 10.3901/JME.2022.12.197
Previous Articles Next Articles
CHEN Gong1,2, TANG Yong1,2, ZHANG Shiwei1,2, ZHONG Guisheng1,2, SUN Yalong1,2, LI Jie1,2
Received:
2021-09-16
Revised:
2021-12-06
Online:
2022-06-20
Published:
2022-09-14
CLC Number:
CHEN Gong, TANG Yong, ZHANG Shiwei, ZHONG Guisheng, SUN Yalong, LI Jie. Development Status and Perspective Trend of Ultrathin Vapor Chamber[J]. Journal of Mechanical Engineering, 2022, 58(12): 197-212.
[1] SOHEL MURSHED S M, NIETO DE CASTRO C A. A critical review of traditional and emerging techniques and fluids for electronics cooling[J]. Renewable and Sustainable Energy Reviews, 2017, 78:821-833. [2] Elecfans. Kirin 9905G chips with its core photos and sizes.[EB/OL].[2019-11-29]. http://www.elecfans.com/d/1125234.html. [3] AHAMED M S, SAITO Y, MASHIKO K, et al. Characterization of a high performance ultra-thin heat pipe cooling module for mobile hand held electronic devices[J]. Heat and Mass Transfer, 2017, 53(11):3241-3247. [4] CHEN G, JIA M, ZHANG S, et al. Pool boiling enhancement of novel interconnected microchannels with reentrant cavities for high-power electronics cooling[J]. International Journal of Heat and Mass Transfer, 2020, 156:119836. [5] SUN Y, CHEN G, ZHANG S, et al. Pool boiling performance and bubble dynamics on microgrooved surfaces with reentrant cavities[J]. Applied Thermal Engineering, 2017, 125:432-442. [6] QU J, WU H, CHENG P, et al. Recent advances in mems-based micro heat pipes[J]. International Journal of Heat and Mass Transfer, 2017, 110:294-313. [7] WANG H, WANG F, LI Z, et al. Experimental investigation on the thermal performance of a heat sink filled with porous metal fiber sintered felt/paraffin composite phase change material[J]. Applied Energy, 2016, 176:221-232. [8] CHEN G, TANG Y, DUAN L, et al. Thermal performance enhancement of micro-grooved aluminum flat plate heat pipes applied in solar collectors[J]. Renewable Energy, 2020, 146:2234-2242. [9] KOUKORAVAS T P, DAMOULAKIS G, MEGARIDIS C M. Experimental investigation of a vapor chamber featuring wettability-patterned surfaces[J]. Applied Thermal Engineering, 2020, 178:115522. [10] HUANG J, ZHOU W, XIANG J, et al. Development of novel flexible heat pipe with multistage design inspired by structure of human spine[J]. Applied Thermal Engineering, 2020, 175:115392. [11] LING W, ZHOU W, YU W, et al. Thermal performance of loop heat pipes with smooth and rough porous copper fiber sintered sheets[J]. Energy Conversion and Management, 2017, 153:323-334. [12] 汤勇, 唐恒, 万珍平, 等. 超薄微热管的研究现状及发展趋势[J]. 机械工程学报, 2017, 53(20):131-144. TANG Yong, TANG Heng, WAN Zhenping, et al. Development status and perspective trend of ultra-thin micro heat pipe[J]. Journal of Mechanical Engineering, 2017, 53(20):131-144. [13] Techspot. Samsung Galaxy S7 teardown reveals underwhelming small heatpipe cooler.[EB/OL].[2016-03-08]. https://www.techspot.com/news/64036-samsung-galaxy-s7-teardown-revealsunderwhelming-small-heatpipe.html. [14] CHENG X, YANG G, WU J. Recent advances in the optimization of evaporator wicks of vapor chambers:From mechanism to fabrication technologies[J]. Applied Thermal Engineering, 2021, 188:116611. [15] TANG H, TANG Y, WAN Z, et al. Review of applications and developments of ultra-thin micro heat pipes for electronic cooling[J]. Applied Energy, 2018, 223:383-400. [16] Moqiehome. The market prospect of heat dissipation of vapor chamber and graphene in smart mobile phone applications.[EB/OL].[2021-03-04]. http://www.moqiehome.com/news/7468.html. [17] LUO Y, LIU W, GOU J. Multiscale simulation of a novel leaf-vein-inspired gradient porous wick structure[J]. Journal of Bionic Engineering, 2019, 16(5):828-841. [18] SUBEDI B, KIM S H, JANG S P, et al. Effect of mesh wick geometry on the maximum heat transfer rate of flat-micro heat pipes with multi-heat sources and sinks[J]. International Journal of Heat and Mass Transfer, 2019, 131:537-545. [19] LEE D, BYON C. Fabrication and characterization of pure-metal-based submillimeter-thick flexible flat heat pipe with innovative wick structures[J]. International Journal of Heat and Mass Transfer, 2018, 122:306-314. [20] PATANKAR G, WEIBEL J A, GARIMELLA S V. Patterning the condenser-side wick in ultra-thin vapor chamber heat spreaders to improve skin temperature uniformity of mobile devices[J]. International Journal of Heat and Mass Transfer, 2016, 101:927-936. [21] PATANKAR G, WEIBEL J A, GARIMELLA S V. Working-fluid selection for minimized thermal resistance in ultra-thin vapor chambers[J]. International Journal of Heat and Mass Transfer, 2017, 106:648-654. [22] CHANG S W, CHIANG K F, CAI W L. Thermal performance evaluation of thin vapor chamber[J]. Applied Thermal Engineering, 2019, 149:220-230. [23] 李聪. 基于不同热负荷的超薄均热板传热传质特性研究[D]. 广州:华南理工大学, 2018. LI Cong. Analysis on heat and mass transfer characteristic of ultra-thin vapor chamber based on different heat loads[D]. Guangzhou:South China University of Technology, 2018. [24] LI W, WANG Z, YANG F, et al. Supercapillary architecture-activated two-phase boundary layer structures for highly stable and efficient flow boiling heat transfer[J]. Advanced Materials, 2020, 32(2):1905117. [25] REAY D, KEW P, MCGLEN R. Heat pipes:Theory, design and applications[M]. Sixth Edition. Oxford:Butterworth Heinemann, 2013. [26] CHEN X, YE H, FAN X, et al. A review of small heat pipes for electronics[J]. Applied Thermal Engineering, 2016, 96:1-17. [27] BULUT M, KANDLIKAR S G, SOZBIR N. A review of vapor chambers[J]. Heat Transfer Engineering, 2019, 40(19):1551-1573. [28] KIM S B, KIM K H, JANG S P, et al. Thermal characteristics of silicon wafer-based TVCs (thin vapor chambers) with disk-shape using DI water[J]. International Journal of Heat and Mass Transfer, 2018, 127:526-534. [29] STRUSS Q, COUDRAIN P, COLONNA J, et al. Design and fabrication of an ultra-thin silicon vapor chamber for compact electronic cooling[C]//2020 IEEE 70th Electronic Components and Technology Conference, May 26-29, 2020, ake Buena Vista, USA. New York:IEEE, 2020:2259-2265. [30] SHI B, ZHANG H, ZHANG P, et al. Performance test of an ultra-thin flat heat pipe with a 0.2 mm thick vapor chamber[J]. Journal of Micromechanics and Microengineering, 2019, 29(11):115019. [31] YANG Y, LIAO D, WANG H, et al. Development of ultrathin thermal ground plane with multiscale micro/nanostructured wicks[J]. Case Studies in Thermal Engineering, 2020, 22:100738. [32] CHEN Z, LI Y, ZHOU W, et al. Design, fabrication and thermal performance of a novel ultra-thin vapour chamber for cooling electronic devices[J]. Energy Conversion and Management, 2019, 187:221-231. [33] ZHANG L Y, LIU Y Y, GUO X, et al. Experimental investigation and economic analysis of gravity heat pipe exchanger applied in communication base station[J]. Applied Energy, 2017, 194:499-507. [34] XU S, LEWIS R, LIEW L, et al. Development of ultra-thin thermal ground planes by using stainless-steel mesh as wicking structure[J]. Journal of Microelectromechanical Systems, 2016, 25:1-3. [35] MCNALLY D P, LEWIS R, LEE Y. Characterization of hybrid wicking structures for flexible vapor chambers[J]. Journal of Electronic Packaging, 2019, 141(1):011005. [36] OSHMAN C, LI Q, LIEW L A, et al. Flat flexible polymer heat pipes[J]. Journal of Micromechanics and Microengineering, 2013, 23(1):015001. [37] LIEW L A, LIN C Y, LEWIS R, et al. Flexible thermal ground planes fabricated with printed circuit board technology[J]. Journal of Electronic Packaging, 2017, 139(1):011003. [38] HUANG Z, JIAN Q, ZHAO J. Thermal management of open-cathode proton exchange membrane fuel cell stack with thin vapor chambers[J]. Journal of Power Sources, 2021, 485:229314. [39] HUANG G, LIU W, LUO Y, et al. Research and optimization design of limited internal cavity of ultra-thin vapor chamber[J]. International Journal of Heat and Mass Transfer, 2020, 148:119101. [40] ZHOU W, LI Y, CHEN Z, et al. A novel ultra-thin flattened heat pipe with biporous spiral woven mesh wick for cooling electronic devices[J]. Energy Conversion and Management, 2019, 180:769-783. [41] ZHOU W, LI Y, CHEN Z, et al. Effect of the passage area ratio of liquid to vapor on an ultra-thin flattened heat pipe[J]. Applied Thermal Engineering, 2019, 162:114215. [42] ZHOU W, LI Y, CHEN Z, et al. Ultra-thin flattened heat pipe with a novel band-shape spiral woven mesh wick for cooling smartphones[J]. International Journal of Heat and Mass Transfer, 2020, 146:118792. [43] LÜ L, LI J. Managing high heat flux up to 500 w/cm2 through an ultra-thin flat heat pipe with superhydrophilic wick[J]. Applied Thermal Engineering, 2017, 122:593-600. [44] LI J, LÜ L, ZHOU G, et al. Mechanism of a microscale flat plate heat pipe with extremely high nominal thermal conductivity for cooling high-end smartphone chips[J]. Energy Conversion and Management, 2019, 201:112202. [45] HUANG G, LIU W, LUO Y, et al. A novel ultra-thin vapor chamber for heat dissipation in ultra-thin portable electronic devices[J]. Applied Thermal Engineering, 2020, 167:114726. [46] HUANG G, LIU W, LUO Y, et al. A new ultra-thin vapor chamber with composite wick for thin electronic products[J]. International Journal of Thermal Sciences, 2021, 170:107145. [47] YU J, LI Y, CHEN Z, et al. Effect of the passage area ratio of wick on an ultra-thin vapour chamber with a spiral woven mesh wick[J]. Applied Thermal Engineering, 2021, 196:117282. [48] CARDIN N, LIPS S, SIEDEL S, et al. Two-phase electrohydrodynamics along a grooved flat heat pipe[J]. Experiments in Fluids, 2020, 61(8):170. [49] LI Y, LI Z, ZHOU W, et al. Experimental investigation of vapor chambers with different wick structures at various parameters[J]. Experimental Thermal and Fluid Science, 2016, 77:132-143. [50] ZENG J, CHEN C, TANG Y, et al. Effect of powder size on capillary and two-phase heat transfer performance for porous interconnected microchannel nets as enhanced wick for two-phase heat transfer devices[J]. Applied Thermal Engineering, 2016, 104:668-677. [51] SOMASUNDARAM D, MANI A, KAMARAJ M. Experimental investigation of thermal performance of metal foam wicked flat heat pipe[J]. Experimental Thermal and Fluid Science, 2017, 82:482-492. [52] JI X, XU J, ABANDA A M. Copper foam based vapor chamber for high heat flux dissipation[J]. Experimental Thermal and Fluid Science, 2012, 40:93-102. [53] PATEL A K, ZHAO W. Heat transfer analysis of graphite foam embedded vapor chamber for cooling of power electronics in electric vehicles[C]//American Society of Mechanical Engineers. Heat Transfer Summer Conference, July 9-12, 2017, Bellevue, Washington, USA. New York:AMSE, 2017, 57885:V001T09A003. [54] YAO F, MIAO S, ZHANG M, et al. An experimental study of an anti-gravity vapor chamber with a tree-shaped evaporator[J]. Applied Thermal Engineering, 2018, 141:1000-1008. [55] WONG S C, CHENG H S, TU C W. Visualization experiments on the performance of mesh-wick heat pipes with differing wick wettability[J]. International Journal of Heat and Mass Transfer, 2017, 114:1045-1053. [56] BRAHIM T, DHAOU M H, JEMNI A. Theoretical and experimental investigation of plate screen mesh heat pipe solar collector[J]. Energy Conversion and Management, 2014, 87:428-438. [57] ZHU M, HUANG J, SONG M, et al. Thermal performance of a thin flat heat pipe with grooved porous structure[J]. Applied Thermal Engineering, 2020, 173:115215. [58] WONG S C, CHEN C W. Visualization experiments for groove-wicked flat-plate heat pipes with various working fluids and powder-groove evaporator[J]. International Journal of Heat and Mass Transfer, 2013, 66:396-403. [59] OSHMAN C, SHI B, LI C, et al. The development of polymer-based flat heat pipes[J]. Journal of Microelectromechanical Systems, 2011, 20(2):410-417. [60] TANG Y, TANG H, LI J, et al. Experimental investigation of capillary force in a novel sintered copper mesh wick for ultra-thin heat pipes[J]. Applied Thermal Engineering, 2017, 115:1020-1030. [61] SHAERI M R, ATTINGER D, BONNER R. Feasibility study of a vapor chamber with a hydrophobic evaporator substrate in high heat flux applications[J]. International Communications in Heat and Mass Transfer, 2017, 86:199-205. [62] BARAKO M, ROY-PANZER S, ENGLISH T, et al. Thermal conduction in vertically aligned copper nanowire arrays and composites[J]. ACS Applied Materials & Interfaces, 2015, 7:19251-19259. [63] ZHANG S, CHEN J, SUN Y, et al. Experimental study on the thermal performance of a novel ultra-thin aluminum flat heat pipe[J]. Renewable Energy, 2019, 135:1133-1143. [64] LIM H T, KIM S H, IM H D, et al. Fabrication and evaluation of a copper flat micro heat pipe working under adverse-gravity orientation[J]. Journal of Micromechanics and Microengineering, 2008, 18(10):105013. [65] CHEN G, TANG Y, WAN Z, et al. Heat transfer characteristic of an ultra-thin flat plate heat pipe with surface-functional wicks for cooling electronics[J]. International Communications in Heat and Mass Transfer, 2019, 100:12-19. [66] PAIVA K V D, MANTELLI B H M, SLONGO L K. Thermal behavior analysis of wire mini heat pipe[J]. Journal of Heat Transfer, 2011, 133(12):121502. [67] DING C, SONI G, BOZORGI P, et al. A flat heat pipe architecture based on nanostructured titania[J]. Journal of Microelectromechanical Systems, 2010, 19(4):878-884. [68] TANG H, TANG Y, YUAN W, et al. Fabrication and capillary characterization of axially micro-grooved wicks for aluminium flat-plate heat pipes[J]. Applied Thermal Engineering, 2018, 129:907-915. [69] LI J, LV L. Experimental studies on a novel thin flat heat pipe heat spreader[J]. Applied Thermal Engineering, 2016, 93:139-146. [70] LV L, LI J. Effect of charging ratio on thermal performance of a miniaturized two-phase super-heat-spreader[J]. International Journal of Heat and Mass Transfer, 2017, 104:489-492. [71] ZHANG S, TANG Y, ZENG J, et al. Pool boiling heat transfer enhancement by porous interconnected microchannel nets at different liquid subcooling[J]. Applied Thermal Engineering, 2016, 93:1135-1144. [72] ZHANG S, TANG Y, YUAN W, et al. A comparative study of flow boiling performance in the interconnected microchannel net and rectangular microchannels[J]. International Journal of Heat and Mass Transfer, 2016, 98:814-823. [73] LI Q, LAN Z, CHUN J, et al. Fabrication and capillary characterization of multi-scale micro-grooved wicks with sintered copper powder[J]. International Communications in Heat and Mass Transfer, 2021, 121:105123. [74] TANG Y, HONG S, WANG S, et al. Experimental study on thermal performances of ultra-thin flattened heat pipes[J]. International Journal of Heat and Mass Transfer, 2019, 134:884-894. [75] XU S, LEWIS R, WEN R, et al. Micromesh-enabled low-cost thermal ground planes for high heat flux power electronics[C]//2018 IEEE 68th Electronic Components and Technology Conference, May 29-Jun 1, 2018, Marina, USA. New York:IEEE, 2018:2248-2253. [76] CHEN G, FAN D, ZHANG S, et al. Wicking capability evaluation of multilayer composite micromesh wicks for ultrathin two-phase heat transfer devices[J]. Renewable Energy, 2021, 163:921-929. [77] ZHANG S, JIANG X, LI Y, et al. Extraordinary boiling enhancement through micro-chimney effects in gradient porous micromeshes for high-power applications[J]. Energy Conversion and Management, 2020, 209:112665. [78] HUANG G, LIU W, LUO Y, et al. Fabrication and thermal performance of mesh-type ultra-thin vapor chambers[J]. Applied Thermal Engineering, 2019, 162:114263. [79] OSHMAN C, LI Q, LIEW L A, et al. Thermal performance of a flat polymer heat pipe heat spreader under high acceleration[J]. Journal of Micromechanics and Microengineering, 2012, 22(4):045018. [80] DENG D, HUANG Q, XIE Y, et al. Thermal performance of composite porous vapor chambers with uniform radial grooves[J]. Applied Thermal Engineering, 2017, 125:1334-1344. [81] CHEN L, DENG D, HUANG Q, et al. Development and thermal performance of a vapor chamber with multi-artery reentrant microchannels for high-power LED[J]. Applied Thermal Engineering, 2020, 166:114686. [82] 唐恒, 汤勇, 万珍平, 等. 平板铝热管微沟槽吸液芯的制备及毛细性能研究[J]. 机械工程学报, 2019, 55(6):186-193. TANG Heng, TANG Yong, WAN Zhen, et al. Fabrication and capillary performance of micro-grooved wicks for aluminium flat-plate heat pipes[J]. Journal of Mechanical Engineering, 2019, 55(6):186-193. [83] RYU S, HAN J, KIM J, et al. Enhanced heat transfer using metal foam liquid supply layers for micro heat spreaders[J]. International Journal of Heat and Mass Transfer, 2017, 108:2338-2345. [84] JI X, XU J, LI H, et al. Switchable heat transfer mechanisms of nucleation and convection by wettability match of evaporator and condenser for heat pipes:Nano-structured surface effect[J]. Nano Energy, 2017, 38:313-325. [85] WEN R, XU S, LEE Y C, et al. Capillary-driven liquid film boiling heat transfer on hybrid mesh wicking structures[J]. Nano Energy, 2018, 51:373-382. [86] LUO J L, MO D C, WANG Y Q, et al. Biomimetic copper forest wick enables high thermal conductivity ultrathin heat pipe[J]. ACS Nano, 2021, 15(4):6614-6621. [87] CHEN Z, LI Y, YU J, et al. Fabrication and characterization of ultra-thin vapour chambers with printed copper powder wick[J]. Applied Thermal Engineering, 2022, 201:117734. [88] ZHOU F, LIU Y, DEDE E M. Design, fabrication, and performance evaluation of a hybrid wick vapor chamber[J]. Journal of Heat Transfer, 2019, 141(8):081802. [89] LI Y, ZHOU W, LI Z, et al. Experimental analysis of thin vapor chamber with composite wick structure under different cooling conditions[J]. Applied Thermal Engineering, 2019, 156:471-484. [90] ZENG J, ZHANG S, CHEN G, et al. Experimental investigation on thermal performance of aluminum vapor chamber using micro-grooved wick with reentrant cavity array[J]. Applied Thermal Engineering, 2018, 130:185-194. [91] LIU T, ASHEGHI M, GOODSON K E. Performance and manufacturing of silicon-based vapor chambers[J]. Applied Mechanics Reviews, 2021, 73(1):010802. [92] CAI Q, CHEN B C, TSAI C. Design, development and tests of high-performance silicon vapor chamber[J]. Journal of Micromechanics and Microengineering, 2012, 22(3):035009. [93] LIU T, DUNHAM M T, JUNG K W, et al. Characterization and thermal modeling of a miniature silicon vapor chamber for die-level heat redistribution[J]. International Journal of Heat and Mass Transfer, 2020, 152:119569. [94] YANG K S, YANG T Y, TU C W, et al. A novel flat polymer heat pipe with thermal via for cooling electronic devices[J]. Energy Conversion and Management, 2015, 100:37-44. [95] LEWIS R, LIEW L A, XU S, et al. Microfabricated ultra-thin all-polymer thermal ground planes[J]. Science Bulletin, 2015, 60(7):701-706. [96] HSIEH S S, YANG Y R. Design, fabrication and performance tests for a polymer-based flexible flat heat pipe[J]. Energy Conversion and Management, 2013, 70:10-19. [97] ISAACS S, ARIAS D, HENGEVELD D, et al. Experimental development and computational optimization of flat heat pipes for cubesat applications[J]. Journal of Electronic Packaging, 2017, 139:020910. |
[1] | SUN Yuxin, CAI Shouyu, ZHANG Xu, WANG Ke. Topology Optimization Design of Heat Dissipation Structures Based on the Adaptive Feature-driven Method [J]. Journal of Mechanical Engineering, 2024, 60(15): 346-357. |
[2] | HUANG Mingzhe, XIAO Mi, LIU Xiliang, SHA Wei, ZHOU Mian, GAO Liang. Multiscale Isogeometric Topology Optimization of Cellular Structures for Heat Dissipation [J]. Journal of Mechanical Engineering, 2024, 60(1): 54-64. |
[3] | TANG Yong, SUN Yalong, TANG Heng, WAN Zhenping, YUAN Wei. Development Status and Perspective Trend of Flexible Heat Pipe [J]. Journal of Mechanical Engineering, 2022, 58(10): 265-279. |
[4] | DUAN Heping, JIANG Tingting, LUO Yongshui, SHEN Xinhe, LI Yongliang. Numerical Simulation and Optimization Analysis of Wind Turbine Tower Ventilation and Heat Dissipation Based on CFD [J]. Journal of Electrical Engineering, 2022, 17(1): 122-128. |
[5] | WANG Pu, XIAO Hong, SHEN Houfa, CHEN Xiqing, CHEN Lie, LAN Peng, ZHANG Jiaquan. Effect of Mold Electromagnetic Stirring on the Gear Steel Solidification Behavior of Its Large-sized Round Casting [J]. Journal of Mechanical Engineering, 2021, 57(2): 105-111. |
[6] | TANG Yong, TANG Heng, WAN Zhenping, YUAN Wei, LU Longsheng, LI Zongtao. Development Status and Perspective Trend of Ultra-thin Micro Heat Pipe [J]. Journal of Mechanical Engineering, 2017, 53(20): 131-144. |
[7] | LI Jiaqi, NI Jimin, SHI Xiuyong, XU Xiaochuan, CHEN Zhenbin, LIU Yue. Study on Factors Affecting Lubrication and Heat Dissipation Performance of Floating Ring Bearing in Turbocharger [J]. Journal of Mechanical Engineering, 2017, 53(17): 141-148. |
[8] | XU Xiaoming;ZHAO Youqun. Research on Thermal Flow Field Synergy and Heat Dissipation Performance of Electric Vehicle Cooling System [J]. , 2013, 49(2): 102-108. |
[9] | CHEN Yanhu;YANG Canjun;LI Dejun;JIN Bo. Research on Heat Dissipation Mechanism of the Power Supply in Seafloor Observation Network Junction Box [J]. , 2013, 49(2): 121-127. |
[10] | WAN Zhongmin;CHEN Min;LIU Wei;LIU Jing. Research on Porous Micro Heat Sink for Thermal Management of High Power LED [J]. , 2010, 46(8): 109-113. |
[11] | WANG Hui;TANG Yong;YU Jianjun. Recent Advances of the Phase Change Micro-channel Cooling Structure [J]. , 2010, 46(24): 101-106. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||