Journal of Mechanical Engineering ›› 2022, Vol. 58 ›› Issue (11): 11-36.doi: 10.3901/JME.2022.11.011
Previous Articles Next Articles
YIN Hesheng, PEI Shuo, XU Lei, HUANG Bo
Received:
2021-10-07
Revised:
2022-01-15
Online:
2022-06-05
Published:
2022-08-08
CLC Number:
YIN Hesheng, PEI Shuo, XU Lei, HUANG Bo. Review of Research on Multi-robot Visual Simultaneous Localization and Mapping[J]. Journal of Mechanical Engineering, 2022, 58(11): 11-36.
[1] 关英姿,刘文旭,焉宁,等. 空间多机器人协同运动规划研究[J]. 机械工程学报,2019,55(12):37-43. GUAN Yingzi,LIU Wenxu,YAN Ning,et al. Research on cooperative motion planning of space multi-robots[J]. Journal of Mechanical Engineering,2019,55(12):37-43. [2] ARAI T,PAGELLO E,PARKER L E. Advances in multi-robot systems[J]. IEEE Transactions on Robotics and Automation,2002,18(5):655-661. [3] RIZK Y,AWAD M,TUNSTEL E W. Cooperative heterogeneous multi-robot systems:A survey[J]. ACM Computing Surveys (CSUR),2019,52(2):1-31. [4] FARINELLI A,ZANOTTO E,PAGELLO E. Advanced approaches for multi-robot coordination in logistic scenarios[J]. Robotics and Autonomous Systems,2017,90:34-44. [5] KRUIJFF-KORBAYOVá I,COLAS F,GIANNI M,et al. Tradr project:Long-term human-robot teaming for robot assisted disaster response[J]. KI-Künstliche Intelligenz,2015,29(2):193-201. [6] AL-HUSSAINI S,GREGORY J M,GUAN Y,et al. Generating alerts to assist with task assignments in human-supervised multi-robot teams operating in challenging environments[C]//Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),Las Vegas:IEEE,2020:11245-11252. [7] SCHUSTER M J,MüLLER M G,BRUNNER S G,et al. The ARCHES space-analogue demonstration mission:Towards heterogeneous teams of autonomous robots for collaborative scientific sampling in planetary exploration[J]. IEEE Robotics and Automation Letters,2020,5(4):5315-5322. [8] OLSON E,STROM J,MORTON R,et al. Progress toward multi-robot reconnaissance and the MAGIC 2010 competition[J]. Journal of Field Robotics,2012,29(5):762-792. [9] SAEEDI S,TRENTINI M,SETO M,et al. Multiple-robot simultaneous localization and mapping:A review[J]. Journal of Field Robotics,2016,33(1):3-46. [10] TAKETOMI T,UCHIYAMA H,IKEDA S. Visual SLAM algorithms:A survey from 2010 to 2016[J]. IPSJ Transactions on Computer Vision and Applications,2017,9(1):1-11. [11] KHAIRUDDIN A R,TALIB M S,HARON H. Review on simultaneous localization and mapping (SLAM)[C]//Proceedings of the 2015 IEEE International Conference on Control System,Computing and Engineering (ICCSCE),George Town,Malaysia:IEEE,2015:85-90. [12] 高翔,张涛,颜沁睿,等. 视觉SLAM十四讲:从理论到实践[M]. 北京:电子工业出版社,2017. GAO Xiang,ZHANG Tao,YAN Qinrui,et al. Fourteen lectures on visual SLAM:From theory to practice[M]. Beijing:Publishing House of Electronics Industry,2017. [13] MUEGGLER E,REBECQ H,GALLEGO G,et al. The event-camera dataset and simulator:Event-based data for pose estimation,visual odometry,and SLAM[J]. The International Journal of Robotics Research,2017,36(2):142-149. [14] ENDRES F,HESS J,ENGELHARD N,et al. An evaluation of the RGB-D SLAM system[C]//Proceedings of the 2012 IEEE International Conference on Robotics and Automation,Bielefeld:IEEE,2012:1691-1696. [15] CHO Y,KIM A. Visibility enhancement for underwater visual SLAM based on underwater light scattering model[C]//Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA),Singapore:IEEE,2017:710-717. [16] NIKOLIC J,REHDER J,BURRI M,et al. A synchronized visual-inertial sensor system with FPGA pre-processing for accurate real-time SLAM[C]//Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA),Hong Kong:IEEE,2014:431-437. [17] SHIN Y-S,PARK Y S,KIM A. Direct visual slam using sparse depth for camera-lidar system[C]//Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA),Brisbane:IEEE,2018:5144-5151. [18] KROMBACH N,DROESCHEL D,HOUBEN S,et al. Feature-based visual odometry prior for real-time semi-dense stereo SLAM[J]. Robotics and Autonomous Systems,2018,109:38-58. [19] LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision,2004,60(2):91-110. [20] BAY H,TUYTELAARS T,VAN GOOL L. Surf:Speeded up robust features[C]//Proceedings of the European Conference on Computer Vision,Graz,Austria:Springer,2006:404-417. [21] RUBLEE E,RABAUD V,KONOLIGE K,et al. ORB:An efficient alternative to SIFT or SURF[C]//Proceedings of the 2011 International Conference on Computer Vision,Barcelona,Spain:IEEE,2011:2564-2571. [22] DOHERTY K J,BAXTER D P,SCHNEEWEISS E,et al. Probabilistic data association via mixture models for robust semantic SLAM[C]//Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA),Paris:IEEE,2020:1098-1104. [23] CADENA C,CARLONE L,CARRILLO H,et al. Past,present,and future of simultaneous localization and mapping:Toward the robust-perception age[J]. IEEE Transactions on Robotics,2016,32(6):1309-1332. [24] NEWCOMBE R A,LOVEGROVE S J,DAVISON A J. DTAM:Dense tracking and mapping in real-time[C]//Proceedings of the 2011 International Conference on Computer Vision,Barcelona,Spain:IEEE,2011:2320-2327. [25] ENGEL J,SCHöPS T,CREMERS D. LSD-SLAM:Large-scale direct monocular SLAM[C]//Proceedings of the European Conference on Computer Vision,Zurich,Switzerland:Springer,2014:834-849. [26] WANG R,SCHWORER M,CREMERS D. Stereo DSO:Large-scale direct sparse visual odometry with stereo cameras[C]//Proceedings of the IEEE International Conference on Computer Vision,Venice:IEEE,2017:3903-3911. [27] FORSTER C,ZHANG Z,GASSNER M,et al. SVO:Semidirect visual odometry for monocular and multicamera systems[J]. IEEE Transactions on Robotics,2016,33(2):249-265. [28] GREENE W N,ROY N. Metrically-scaled monocular slam using learned scale factors[C]//Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA),Paris:IEEE,2020:43-50. [29] LI S,XU C,XIE M. A robust O (n) solution to the perspective-n-point problem[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,34(7):1444-1450. [30] GAO X S,HOU X R,TANG J,et al. Complete solution classification for the perspective-three-point problem[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(8):930-943. [31] ABDEL-AZIZ Y I,KARARA H,HAUCK M. Direct linear transformation from comparator coordinates into object space coordinates in close-range photogrammetry[J]. Photogrammetric Engineering & Remote Sensing,2015,81(2):103-107. [32] LEPETIT V,MORENO-NOGUER F,FUA P. Epnp:An accurate o (n) solution to the pnp problem[J]. International Journal of Computer Vision,2009,81(2):155-166. [33] TRIGGS B,MCLAUCHLAN P F,HARTLEY R I,et al. Bundle adjustment-a modern synthesis[C]//Proceedings of the International Workshop on Vision Algorithms,Corfu,Greece:Springer,1999:298-372. [34] LI S,LEE D. Fast visual odometry using intensity-assisted iterative closest point[J]. IEEE Robotics and Automation Letters,2016,1(2):992-999. [35] CHETVERIKOV D,SVIRKO D,STEPANOV D,et al. The trimmed iterative closest point algorithm[C]//Proceedings of the Object Recognition Supported by User Interaction for Service Robots,2002. IEEE:545-548. [36] CAMPOS C,ELVIRA R,RODRíGUEZ J J G,et al. ORB-SLAM3:An accurate open-source library for visual,visual-inertial,and multimap SLAM[J]. IEEE Transactions on Robotics,2021,37(6):1874-1890. [37] STRASDAT H,MONTIEL J M,DAVISON A J. Visual SLAM:why filter?[J]. Image and Vision Computing,2012,30(2):65-77. [38] GRISETTI G,KüMMERLE R,STACHNISS C,et al. A tutorial on graph-based SLAM[J]. IEEE Intelligent Transportation Systems Magazine,2010,2(4):31-43. [39] RIBEIRO M I. Kalman and extended kalman filters:Concept,derivation and properties[J]. Institute for Systems and Robotics,2004,43:46. [40] SäRKKä S,VEHTARI A,LAMPINEN J. Rao-Blackwellized particle filter for multiple target tracking[J]. Information Fusion,2007,8(1):2-15. [41] CADENA C,NEIRA J. SLAM in O (logn) with the Combined Kalman-Information Filter[J]. Robotics and Autonomous Systems,2010,58(11):1207-1219. [42] DISSANAYAKE G,HUANG S,WANG Z,et al. A review of recent developments in simultaneous localization and mapping[C]//Proceedings of the 20116th International Conference on Industrial and Information Systems,IEEE,2011:477-482. [43] SüNDERHAUF N,PROTZEL P. Switchable constraints for robust pose graph SLAM[C]//Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems,Vilamoura:IEEE,2012:1879-1884. [44] INDELMAN V,WILLIAMS S,KAESS M,et al. Information fusion in navigation systems via factor graph based incremental smoothing[J]. Robotics and Autonomous Systems,2013,61(8):721-738. [45] ANGELI A,FILLIAT D,DONCIEUX S,et al. Fast and incremental method for loop-closure detection using bags of visual words[J]. IEEE Transactions on Robotics,2008,24(5):1027-1037. [46] SIAM S M,ZHANG H. Fast-SeqSLAM:A fast appearance based place recognition algorithm[C]//Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA),Singapore:IEEE,2017:5702-5708. [47] TSINTOTAS K A,BAMPIS L,GASTERATOS A. Probabilistic appearance-based place recognition through bag of tracked words[J]. IEEE Robotics and Automation Letters,2019,4(2):1737-1744. [48] WANG C,MA H,CHEN W,et al. Efficient autonomous exploration with incrementally built topological map in 3-D environments[J]. IEEE Transactions on Instrumentation and Measurement,2020,69(12):9853-9865. [49] MUR-ARTAL R,MONTIEL J M M,TARDOS J D. ORB-SLAM:A versatile and accurate monocular SLAM system[J]. IEEE Transactions on Robotics,2015,31(5):1147-1163. [50] MUR-ARTAL R,TARDóS J D. Orb-slam2:An open-source slam system for monocular,stereo,and rgb-d cameras[J]. IEEE Transactions on Robotics,2017,33(5):1255-1262. [51] PIZZOLI M,FORSTER C,SCARAMUZZA D. REMODE:Probabilistic,monocular dense reconstruction in real time[C]//Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA),Hong Kong:IEEE,2014:2609-2616. [52] WHELAN T,KAESS M,JOHANNSSON H,et al. Real-time large-scale dense RGB-D SLAM with volumetric fusion[J]. The International Journal of Robotics Research,2015,34(4-5):598-626. [53] XU Y,JOHN V,MITA S,et al. 3D point cloud map based vehicle localization using stereo camera[C]//Proceedings of the 2017 IEEE Intelligent Vehicles Symposium (IV),Los Angeles:IEEE,2017:487-492. [54] WHELAN T,KAESS M,FALLON M,et al. Kintinuous:Spatially extended kinectfusion[EB/OL].[2021-10-19]. http://hdl.handle.net/1721.1/71756. [55] STüCKLER J,BEHNKE S. Multi-resolution surfel maps for efficient dense 3D modeling and tracking[J]. Journal of Visual Communication and Image Representation,2014,25(1):137-147. [56] FEHR M,FURRER F,DRYANOVSKI I,et al. TSDF-based change detection for consistent long-term dense reconstruction and dynamic object discovery[C]//Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA),Singapore:IEEE,2017:5237-5244. [57] NEWCOMBE R A,IZADI S,HILLIGES O,et al. Kinectfusion:Real-time dense surface mapping and tracking[C]//Proceedings of the 201110th IEEE International Symposium on Mixed and Augmented Reality,IEEE,2011:127-136. [58] WHELAN T,LEUTENEGGER S,SALAS-MORENO R,et al. ElasticFusion:Dense SLAM without a pose graph[C]//Robotics:Science and Systems,Rome,Italy,2015. doi:10.15607/RSS.2015.XI.001. [59] NEWCOMBE R A,FOX D,SEITZ S M. Dynamicfusion:Reconstruction and tracking of non-rigid scenes in real-time[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,Boston,Massachusetts:IEEE,2015:343-352. [60] VESPA E,NIKOLOV N,GRIMM M,et al. Efficient octree-based volumetric SLAM supporting signed-distance and occupancy mapping[J]. IEEE Robotics and Automation Letters,2018,3(2):1144-1151. [61] WURM K M,HORNUNG A,BENNEWITZ M,et al. OctoMap:A probabilistic,flexible,and compact 3D map representation for robotic systems[C]//Proceedings of the ICRA 2010 Workshop on Best Practice in 3D Perception and Modeling for Mobile Manipulation,2010:2. [62] HORNUNG A,WURM K M,BENNEWITZ M,et al. OctoMap:An efficient probabilistic 3D mapping framework based on octrees[J]. Autonomous Robots,2013,34(3):189-206. [63] SALAS-MORENO R F,NEWCOMBE R A,STRASDAT H,et al. Slam++:Simultaneous localisation and mapping at the level of objects[C]//Proceedings of of the IEEE Conference on Computer Vision and Pattern Recognition,Portland,Oregon:IEEE,2013:1352-1359. [64] LAI K,BO L,FOX D. Unsupervised feature learning for 3d scene labeling[C]//Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA),Hong Kong:IEEE,2014:3050-3057. [65] MCCORMAC J,HANDA A,DAVISON A,et al. Semanticfusion:Dense 3d semantic mapping with convolutional neural networks[C]//Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA),Singapore:IEEE,2017:4628-4635. [66] MA X,GUO R,LI Y,et al. Adaptive genetic algorithm for occupancy grid maps merging[C]//Proceedings of the 20087th World Congress on Intelligent Control and Automation,Chongqing:IEEE,2008:5716-5720. [67] 马昕,宋锐,郭睿,等. 基于免疫自适应遗传算法的机器人栅格地图融合[J]. 控制理论与应用,2009,26(009):1004-1008. MA Xin,SONG Rui,GUO Rui,et al. Immune adaptive genetic algorithm for occupancy grid maps merging[J]. Control Theory & Applications,2009,26(009):1004-1008. [68] SCHMUCK P,CHLI M. CCM-SLAM:Robust and efficient centralized collaborative monocular simultaneous localization and mapping for robotic teams[J]. Journal of Field Robotics,2019,36(4):763-781. [69] SCARAMUZZA D,FRAUNDORFER F. Tutorial:visual odometry[J]. IEEE Robotics and Automation Magazine,2011,18(4):80-92. [70] SüNDERHAUF N,SHIRAZI S,DAYOUB F,et al. On the performance of convnet features for place recognition[C]//Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),Hamburg,Germany:IEEE,2015:4297-4304. [71] ARANDJELOVIC R,GRONAT P,TORII A,et al. NetVLAD:CNN architecture for weakly supervised place recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,Las Vegas:IEEE,2016:5297-5307. [72] LAJOIE P-Y,RAMTOULA B,CHANG Y,et al. DOOR-SLAM:Distributed,online,and outlier resilient SLAM for robotic teams[J]. IEEE Robotics and Automation Letters,2020,5(2):1656-1663. [73] GEIGER A,LENZ P,STILLER C,et al. Vision meets robotics:The kitti dataset[J]. The International Journal of Robotics Research,2013,32(11):1231-1237. [74] SIPIRAN I,BUSTOS B. Harris 3D:A robust extension of the Harris operator for interest point detection on 3D meshes[J]. The Visual Computer,2011,27(11):963-976. [75] MIAN A,BENNAMOUN M,OWENS R. On the repeatability and quality of keypoints for local feature-based 3d object retrieval from cluttered scenes[J]. International Journal of Computer Vision,2010,89(2-3):348-361. [76] ZHONG Y. Intrinsic shape signatures:A shape descriptor for 3d object recognition[C]//Proceedings of the 2009 IEEE 12th International Conference on Computer Vision Workshops,ICCV Workshops,IEEE,2009:689-696. [77] BOROSON E R,AYANIAN N. 3D Keypoint Repeatability for Heterogeneous Multi-Robot SLAM[C]//Proceedings of the 2019 International Conference on Robotics and Automation (ICRA),Montreal,Canada:IEEE,2019:6337-6343. [78] JOHNSON A E,HEBERT M. Using spin images for efficient object recognition in cluttered 3D scenes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1999,21(5):433-449. [79] RUSU R B,BLODOW N,BEETZ M. Fast point feature histograms (FPFH) for 3D registration[C]//Proceedings of the 2009 IEEE International Conference on Robotics and Automation,Orlando,Florida:IEEE,2009:3212-3217. [80] TOMBARI F,SALTI S,DI STEFANO L. Unique signatures of histograms for local surface description[C]//Proceedings of the European Conference on Computer Vision,Crete,Greece:Springer,2010:356-369. [81] GIUBILATO R,VAYUGUNDLA M,SCHUSTER M J,et al. Relocalization with submaps:Multi-session mapping for planetary rovers equipped with stereo cameras[J]. IEEE Robotics and Automation Letters,2020,5(2):580-587. [82] AHONEN T,HADID A,PIETIKAINEN M. Face description with local binary patterns:Application to face recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2006,28(12):2037-2041. [83] GORISSE D,CORD M,JORDAN M,et al. 3d content-based retrieval in artwork databases[C]//Proceedings of the 20073DTV Conference,Kos,Greece:IEEE,2007:1-4. [84] ZAHARIA T,PRêTEUX F. Shape-based retrieval of 3D mesh models[C]//Proceedings of the IEEE International Conference on Multimedia and Expo,Lausanne,Switzerland:IEEE,2002:437-440. [85] SCHUSTER M J,SCHMID K,BRAND C,et al. Distributed stereo vision-based 6D localization and mapping for multi-robot teams[J]. Journal of Field Robotics,2019,36(2):305-332. [86] SCHMID K,RUESS F,BURSCHKA D. Local reference filter for life-long vision aided inertial navigation[C]//Proceedings of the 17th International Conference on Information Fusion (FUSION),Salamanca,Spain:IEEE,2014:1-8. [87] SCHUSTER M J,BRAND C,HIRSCHMüLLER H,et al. Multi-robot 6D graph SLAM connecting decoupled local reference filters[C]//Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),Hamburg,Germany:IEEE,2015:5093-5100. [88] TOMBARI F,SALTI S,DI STEFANO L. A combined texture-shape descriptor for enhanced 3D feature matching[C]//Proceedings of the 201118th IEEE International Conference on Image Processing,Brussels,Belgium:IEEE,2011:809-812. [89] BOWMAN S L,ATANASOV N,DANIILIDIS K,et al. Probabilistic data association for semantic slam[C]//Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA),Singapore:IEEE,2017:1722-1729. [90] JAMIESON S,FATHIAN K,KHOSOUSSI K,et al. Multi-Robot distributed semantic mapping in unfamiliar environments through online matching of learned representations[C]//Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA),Xian,China:IEEE,2021:8587-8593. [91] FATHIAN K,KHOSOUSSI K,TIAN Y,et al. Clear:A consistent lifting,embedding,and alignment rectification algorithm for multiview data association[J]. IEEE Transactions on Robotics,2020,36(6):1686-1703. [92] ZHANG Z,SHI Q,MCAULEY J,et al. Pairwise matching through max-weight bipartite belief propagation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,Las Vegas:IEEE,2016:1202-1210. [93] TCHUIEV V,INDELMAN V. Distributed consistent multi-robot semantic localization and mapping[J]. IEEE Robotics and Automation Letters,2020,5(3):4649-4656. [94] GUO X,HU J,CHEN J,et al. Semantic histogram based graph matching for real-Time multi-robot global localization in large scale environment[J]. IEEE Robotics and Automation Letters,2021,6(4):8349-8356. [95] YAMAUCHI B. Frontier-based exploration using multiple robots[C]//Proceedings of the Second International Conference on Autonomous Agents,New York:Association for Computing Machinery,1998:47-53. [96] SILPA-ANAN C,HARTLEY R. Optimised KD-trees for fast image descriptor matching[C]//Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition,New York,USA:IEEE,2008:1-8. [97] FAIGL J,SIMONIN O,CHARPILLET F. Comparison of task-allocation algorithms in frontier-based multi-robot exploration[C]//Proceedings of the European Conference on Multi-Agent Systems,Prague,Czech Republic:Springer,2014:101-110. [98] YAMAUCHI B. A frontier-based approach for autonomous exploration[C]//Proceedings of the 1997 IEEE International Symposium on Computational Intelligence in Robotics and Automation CIRA'97'Towards New Computational Principles for Robotics and Automation',Monterey,USA:IEEE,1997:146-151. [99] JULIá M,GIL A,REINOSO O. A comparison of path planning strategies for autonomous exploration and mapping of unknown environments[J]. Autonomous Robots,2012,33(4):427-444. [100] BURGARD W,MOORS M,STACHNISS C,et al. Coordinated multi-robot exploration[J]. IEEE Transactions on Robotics,2005,21(3):376-386. [101] BAUTIN A,SIMONIN O,CHARPILLET F. MinPos:A novel frontier allocation algorithm for multi-robot exploration[C]//Proceedings of the International Conference on Intelligent Robotics and Applications,Berlin,Heidelberg:Springer,2012:496-508. [102] LAVALLE S M. Rapidly-exploring random trees:A new tool for path planning[EB/OL]. Ames,USA:Iowa State University,1998[2021-10-21]. http://janowiec.cs.iastate.edu/~lavalle/papers/rrt.ps. [103] BAUTIN A,SIMONIN O,CHARPILLET F. Minpos:A novel frontier allocation algorithm for multi-robot exploration[C]//Proceedings of the International Conference on Intelligent Robotics and Applications,Berlin,Heidelberg:Springer,2012:496-508. [104] UMARI H,MUKHOPADHYAY S. Autonomous robotic exploration based on multiple rapidly-exploring randomized trees[C]//Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),Vancouver,Canada:IEEE,2017:1396-1402. [105] STRöM D P,BOGOSLAVSKYI I,STACHNISS C. Robust exploration and homing for autonomous robots[J]. Robotics and Autonomous Systems,2017,90:125-135. [106] COLARES R G,CHAIMOWICZ L. The next frontier:Combining information gain and distance cost for decentralized multi-robot exploration[C]//Proceedings of the 31st Annual ACM Symposium on Applied Computing,New York,USA:Association for Computing Machinery,2016:268-274. [107] SMITH A J,HOLLINGER G A. Distributed inference-based multi-robot exploration[J]. Autonomous Robots,2018,42(8):1651-1668. [108] ZHANG L,LIN Z,WANG J,et al. Rapidly-exploring Random Trees multi-robot map exploration under optimization framework[J]. Robotics and Autonomous Systems,2020,131:103565. [109] SHI T,GU W,CHHAJED D,et al. Effects of remanufacturable product design on market segmentation and the environment[J]. Decision Sciences,2016,47(2):298-332. [110] WURM K M,STACHNISS C,BURGARD W. Coordinated multi-robot exploration using a segmentation of the environment[C]//Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems,Nice,France:IEEE,2008:1160-1165. [111] YANG J,KANG Z,ZENG L,et al. Semantics-guided reconstruction of indoor navigation elements from 3D colorized points[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2021,173:238-261. [112] ZIVKOVIC Z,BAKKER B,KROSE B. Hierarchical map building and planning based on graph partitioning[C]//Proceedings of the 2006 IEEE International Conference on Robotics and Automation,Orlando,USA:IEEE,2006:803-809. [113] BLOCHLIGER F,FEHR M,DYMCZYK M,et al. Topomap:Topological mapping and navigation based on visual slam maps[C]//Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA),Brisbane:IEEE,2018:3818-3825. [114] CHOPRA S,NOTARSTEFANO G,RICE M,et al. A distributed version of the hungarian method for multirobot assignment[J]. IEEE Transactions on Robotics,2017,33(4):932-947. [115] PUIG D,GARCIA M A,WU L. A new global optimization strategy for coordinated multi-robot exploration:Development and comparative evaluation[M]. Robotics & Autonomous Systems. 2011. [116] KWON B C,EYSENBACH B,VERMA J,et al. Clustervision:Visual supervision of unsupervised clustering[J]. IEEE Transactions on Visualization and Computer Graphics,2017,24(1):142-151. [117] LEI T,JIA X,ZHANG Y,et al. Superpixel-based fast fuzzy C-means clustering for color image segmentation[J]. IEEE Transactions on Fuzzy Systems,2018,27(9):1753-1766. [118] BENKRID A,BENALLEGUE A,ACHOUR N. Multi-robot coordination for energy-efficient exploration[J]. Journal of Control,Automation and Electrical Systems,2019,30(6):911-920. [119] CHEN Y,HUANG S,ZHAO L,et al. Cramér-rao bounds and optimal design metrics for pose-graph SLAM[J]. IEEE Transactions on Robotics,2021,37(2):627-641. [120] Mei Y,Lu Y H,Lee C S G,et al. Energy-efficient mobile robot exploration[C]//Proceedings 2006 IEEE International Conference on Robotics and Automation,Orlando,USA:IEEE,2006:505-511. [121] DONG S,XU K,ZHOU Q,et al. Multi-robot collaborative dense scene reconstruction[J]. ACM Transactions on Graphics (TOG),2019,38(4):1-16. [122] 周强. 基于最优质量传输理论的多机器人协作扫描系统设计[D]. 济南:山东大学,2020. ZHOU Qiang. Design of optimal mass transport based multi-robot collaborative scanning system[D]. Jinan:Shandong University,2020. [123] HAKER S,ZHU L,TANNENBAUM A,et al. Optimal mass transport for registration and warping[J]. International Journal of Computer Vision,2004,60(3):225-240. [124] KABIR R H,LEE K. Efficient,decentralized,and collaborative multi-robot exploration using optimal transport theory[C]//Proceedings of the 2021 American Control Conference (ACC),New York:IEEE,2021:4203-4208. [125] VILLANI C. Optimal transport:old and new[M]. Springer,2009. [126] NGUYEN T T,NGUYEN N D,NAHAVANDI S. Deep reinforcement learning for multiagent systems:A review of challenges,solutions,and applications[J]. IEEE Transactions on Cybernetics,2020,50(9):3826-3839. [127] VISERAS A,GARCIA R. DeepIG:Multi-robot information gathering with deep reinforcement learning[J]. IEEE Robotics and Automation Letters,2019,4(3):3059-3066. [128] DINNISSEN P,GIVIGI S N,SCHWARTZ H M. Map merging of multi-robot slam using reinforcement learning[C]//Proceedings of the 2012 IEEE International Conference on Systems,Man,and Cybernetics (SMC),San Antonio,USA:IEEE,2012:53-60. [129] WANG Y,LIANG A,GUAN H. Frontier-based multi-robot map exploration using particle swarm optimization[C]//Proceedings of the 2011 IEEE Symposium on Swarm Intelligence,Paris,France:IEEE,2011:1-6. [130] MENDONçA M,PALáCIOS R H,PAPAGEORGIOU E I,et al. Multi-robot exploration using Dynamic Fuzzy Cognitive Maps and Ant Colony Optimization[C]//Proceedings of the 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE),Glasgow,UK:IEEE,2020:1-8. [131] MENDONçA M,KONDO H S,DE SOUZA L B,et al. Semi-unknown environments exploration inspired by swarm robotics using fuzzy cognitive maps[C]//Proceedings of the 2019 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE),New Orleans,USA:IEEE,2019:1-8. [132] SOLANAS A,GARCIA M A. Coordinated multi-robot exploration through unsupervised clustering of unknown space[C]//Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),Sendai,Japan:IEEE,2004:717-721. [133] FRIEDMAN S,PASULA H,FOX D. Voronoi random fields:extracting topological structure of indoor environments via place labeling[C]//Proceedings of the IJCAI,Hyderabad,India:AAAI Press/The MIT Press,2007:2109-2114. [134] SOUSA P,ARAúJO R,NUNES U. Real-time labeling of places using support vector machines[C]//Proceedings of the 2007 IEEE International Symposium on Industrial Electronics,Vigo,Spain:IEEE,2007:2022-2027. [135] RODRIGUEZ-NIEVA J F,SCHEURER M S. Identifying topological order through unsupervised machine learning[J]. Nature Physics,2019,15(8):790-795. [136] LUPERTO M,AMIGONI F. Predicting the global structure of indoor environments:A constructive machine learning approach[J]. Autonomous Robots,2019,43(4):813-835. [137] NIETO-GRANDA C,ROGERS III J G,CHRISTENSEN H I. Coordination strategies for multi-robot exploration and mapping[J]. The International Journal of Robotics Research,2014,33(4):519-533. [138] CHEN Y,HUANG S,FITCH R,et al. On-line 3D active pose-graph SLAM based on key poses using graph topology and sub-maps[C]//Proceedings of the 2019 International Conference on Robotics and Automation (ICRA),Montreal,Canada:IEEE,2019:169-175. [139] CARRILLO H,REID I,CASTELLANOS J A. On the comparison of uncertainty criteria for active SLAM[C]//Proceedings of the 2012 IEEE International Conference on Robotics and Automation,Bielefeld:IEEE,2012:2080-2087. [140] RODRíGUEZ-ARéVALO M L,NEIRA J,CASTELLANOS J A. On the importance of uncertainty representation in active SLAM[J]. IEEE Transactions on Robotics,2018,34(3):829-834. [141] CARRILLO H,LATIF Y,RODRIGUEZ-AREVALO M L,et al. On the monotonicity of optimality criteria during exploration in active SLAM[C]//Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA),Santiago,Chile:IEEE,2015:1476-1483. [142] CHEN Y,HUANG S,FITCH R. Active SLAM for mobile robots with area coverage and obstacle avoidance[J]. IEEE/ASME Transactions on Mechatronics,2020,25(3):1182-1192. [143] TZOUMANIKAS D,LI W,GRIMM M,et al. Fully autonomous micro air vehicle flight and landing on a moving target using visual-inertial estimation and model-predictive control[J]. Journal of Field Robotics,2019,36(1):49-77. [144] INDELMAN V. Cooperative multi-robot belief space planning for autonomous navigation in unknown environments[J]. Autonomous Robots,2018,42(2):353-373. [145] REGEV T,INDELMAN V. Multi-robot decentralized belief space planning in unknown environments via efficient re-evaluation of impacted paths[C]//Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),Daejeon,Korea:IEEE,2016:5591-5598. [146] PáZMAN A. Foundations of optimum experimental design[M]. Springer,1986. [147] ZHANG Z,SCARAMUZZA D. Beyond point clouds:Fisher information field for active visual localization[C]//Proceedings of the 2019 International Conference on Robotics and Automation (ICRA),Montreal,Canada:IEEE,2019:5986-5992. [148] CHARROW B,KUMAR V,MICHAEL N. Approximate representations for multi-robot control policies that maximize mutual information[J]. Autonomous Robots,2014,37(4):383-400. [149] ATANASOV N A,LE NY J,PAPPAS G J. Distributed algorithms for stochastic source seeking with mobile robot networks[J]. Journal of Dynamic Systems,Measurement,and Control,2015,137(3):031011. [150] MEYER F,WYMEERSCH H,FRöHLE M,et al. Distributed estimation with information-seeking control in agent networks[J]. IEEE Journal on Selected Areas in Communications,2015,33(11):2439-2456. [151] ZHANG Z,SCARAMUZZA D. Perception-aware receding horizon navigation for MAVs[C]//Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA),Brisbane,Australia:IEEE,2018:2534-2541. [152] MORBIDI F,MARIOTTINI G L. Active target tracking and cooperative localization for teams of aerial vehicles[J]. IEEE Transactions on Control Systems Technology,2012,21(5):1694-1707. [153] KOLLAR T,ROY N. Trajectory optimization using reinforcement learning for map exploration[J]. The International Journal of Robotics Research,2008,27(2):175-196. [154] KHOSOUSSI K,HUANG S,DISSANAYAKE G. Novel insights into the impact of graph structure on SLAM[C]//Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems,Chicago (IL),USA:IEEE,2014:2707-2714. [155] KIM A,EUSTICE R M. Active visual SLAM for robotic area coverage:Theory and experiment[J]. The International Journal of Robotics Research,2015,34(4-5):457-475. [156] MAUROVIĆ I,SEDER M,LENAC K,et al. Path planning for active SLAM based on the D* algorithm with negative edge weights[J]. IEEE Transactions on Systems,Man,and Cybernetics:Systems,2017,48(8):1321-1331. [157] CHEN L,SHAN Y,TIAN W,et al. A fast and efficient double-tree RRT*-like sampling-based planner applying on mobile robotic systems[J]. IEEE/ASME Transactions on Mechatronics,2018,23(6):2568-2578. [158] CHEN Y,ZHAO L,LEE K M B,et al. Broadcast your weaknesses:cooperative active pose-graph SLAM for multiple robots[J]. IEEE Robotics and Automation Letters,2020,5(2):2200-2207. [159] KANTAROS Y,SCHLOTFELDT B,ATANASOV N,et al. Asymptotically optimal planning for non-myopic multi-robot information gathering[C]//Proceedings of the Robotics:Science and Systems,Freiburg im Breisgau,Germany,2019:22-26. [160] HOLLINGER G A,SUKHATME G S. Sampling-based robotic information gathering algorithms[J]. The International Journal of Robotics Research,2014,33(9):1271-1287. [161] BRY A,ROY N. Rapidly-exploring random belief trees for motion planning under uncertainty[C]//Proceedings of the 2011 IEEE International Conference on Robotics and Automation,Shanghai,China:IEEE,2011:723-730. [162] CHAVES S M,WALLS J M,GALCERAN E,et al. Risk aversion in belief-space planning under measurement acquisition uncertainty[C]//Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),Hamburg,Germany:IEEE,2015:2079-2086. [163] KAVRAKI L E,SVESTKA P,LATOMBE J-C,et al. Probabilistic roadmaps for path planning in high-dimensional configuration spaces[J]. IEEE Transactions on Robotics and Automation,1996,12(4):566-580. |
[1] | FANG Xudong, DENG Wubin, WU Zutang, LI Jin, WU Chen, MAEDA Ryutaro, TIAN Bian, ZHAO Libo, LIN Qijing, ZHANG Zhongkai, HAN Xiangguang, JIANG Zhuangde. Respiration Measurement Technology Based on Inertial Sensors:A Review [J]. Journal of Mechanical Engineering, 2024, 60(20): 1-23. |
[2] | FU Yang, ZHANG Yue, MAO Ying, TANG Xiaohua, CHEN Zugao, XU Hewu, YANG Yupei, GAO Bin, TIAN Guiyun. Feature Boosting Framework for Pipeline Multi-sensing Defects Inspection Using an Intelligent Pig System [J]. Journal of Mechanical Engineering, 2024, 60(20): 51-67. |
[3] | WU Jie, SHEN Yifu, HUANG Guoqiang. Investigation into the Microstructure and Properties of 2024Al TIG Joint with Wire Filler Subjected to Friction Stir Processing [J]. Journal of Mechanical Engineering, 2024, 60(20): 153-161. |
[4] | ZHANG Zhiyong, WANG Yuxiang, HUANG Caixia, WU You, DU Ronghua. Vehicle Lateral Collision Warning Based on Grey Prediction and Kalman Filter [J]. Journal of Mechanical Engineering, 2024, 60(20): 240-250. |
[5] | LIAO Guiwen, ZHANG Yi, WEI Kai, LIU Xiaojun, WANG Wei. Coupling Characteristics of Liquid-solid Two-phase Flow Field Structure and Particle Motion Behavior at Restricted Lubrication Interface [J]. Journal of Mechanical Engineering, 2024, 60(20): 351-360. |
[6] | WANG Xu, JIANG Xingyu, YANG Guozhe, SUN Meng, YU Shenhong, BI Kaihang, ZHAO Rizheng, LIU Weijun. Research on Optimization of Human-Machine Interface Layout of Laser Cleaning Equipment Based on PSO-SSA [J]. Journal of Mechanical Engineering, 2024, 60(20): 372-387. |
[7] | WANG Dexiang, ZHANG Yu, JIANG Jingliang, LIU Xinfu, LIU Guoliang. Tribological Mechanism on the Grinding Interface of Nickel-base Superalloy under Minimum Quantity Lubrication with Ionic Liquid and Palm Oil Based Nanofluids [J]. Journal of Mechanical Engineering, 2024, 60(19): 159-171. |
[8] | LI Pu, LU Daixing. A Review of Co-simulation Algorithm [J]. Journal of Mechanical Engineering, 2024, 60(19): 172-186. |
[9] | WANG Xiaoyu, WEI Zhaocheng, WANG Xueqin, WANG Dong. Geometric Modeling of Residual Materials in Impeller Milling with Double Row Slotting [J]. Journal of Mechanical Engineering, 2024, 60(19): 310-317. |
[10] | WANG Gaojian, LIU Li, KANG Dandan, YE Yanhong, DENG Dean. Effect of Ni Content on Microstructure, Mechanical Properties and Corrosion Behavior of Weathering Steel Weld Metal for High-speed Train Bogies [J]. Journal of Mechanical Engineering, 2024, 60(18): 163-172. |
[11] | ZHANG Mingkang, SHI Wenqing, XU Meizhen, WANG Di, CHEN Jie. Compression and Fluid Pressure Drop Properties of Implicit Surface Cellular Structures [J]. Journal of Mechanical Engineering, 2024, 60(18): 394-406. |
[12] | MA Weijia, ZHU Xiaolong, LIU Qingyao, DUAN Xingguang, LI Changsheng. Artificial Intelligence in Robot-assisted Surgery [J]. Journal of Mechanical Engineering, 2024, 60(17): 22-39. |
[13] | YUAN Xiaoqing, WU Tao, YUAN Xun, WANG Wendong. Research on a Full-body Power-assisted Exoskeleton Control Method Based on GSO-RF Intent Recognition Algorithm [J]. Journal of Mechanical Engineering, 2024, 60(17): 91-101. |
[14] | ZHANG Yuze, ZHAO Jingfu, ZHAO Zhenwei, KANG Rongjie, DAI Jiansheng, SONG Zhibin. Design and Analysis of a Parallel Cable Driven Lower Limb Rehabilitation Robot for Multi Joints Training [J]. Journal of Mechanical Engineering, 2024, 60(17): 111-122. |
[15] | LIANG Xu, ZHANG Jianyong, LI Guotao, SU Tingting, HE Guangping, HOU Zengguang. Redundant Parallel Mechanism for Fracture Reduction Surgery: Design, Modeling and Performance Analysis [J]. Journal of Mechanical Engineering, 2024, 60(17): 133-146. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||