[1] 王军成.海洋资料浮标原理与工程[M].北京:海洋出版社,2013. WANG Juncheng. Ocean data buoy:Principles and engineering[M]. Beijing:Ocean Press,2013. [2] BEATTY S J,HILES C,NICOLL R S,et al. Design synthesis of a wave energy converter[C/CD]//American Society of Mechanical Engineers. 28th International Conference on Ocean,Offshore and Arctic Engineering,May-June 31-5,2009,Honolulu,Hawaii,USA. [3] 张孝春.波浪浮标水动力特性及波浪要素识别方法研究[D].武汉:武汉大学,2014. ZHANG Xiaochun. Research on wave buoy hydrodynamic characteristic and wave parameters identification method[D]. Wuhan:Wuhan University,2014. [4] 聂卫东,马玲,张博,等.浅析美军水下无人作战系统及其关键技术[J].水下无人系统学报,2017,25(4):310-318. NIE Weidong,MA Ling,ZHANG Bo,et al. A brief analysis of united states unmanned underwater combat system[J]. Journal of Unmanned Undersea Systems,2017,25(4):310-318. [5] 王波,李民,刘世萱,等.海洋资料浮标观测技术应用现状及发展趋势[J].仪器仪表学报,2014,35(11):2401-2414. WANG Bo,LI Min,LIU Shixuan,et al. Current status and trend of ocean data buoy observation technology applications[J]. Chinese Journal of Scientific Instrument,2014,35(11):2401-2414. [6] 邬法磊.基于波浪能的新型海洋浮标发电系统研究[D].青岛:青岛理工大学,2012. WU Falei. Development of the New ocean buoys power generation system based on wave energy[D]. Qingdao:Qingdao Technological University,2012. [7] 陈全胜.硅基太阳能电池及组件的光学性能研究[D].北京:中国科学院物理研究所,2020. CHEN Quansheng. Research on optical properties of silicon solar cells and modules[D]. Beijing:Institute of Physics,Chinese Academy of Science,2020. [8] 林刚.南中国海风场和海浪场统计分析及其应用[D].大连:大连理工大学,2018. LIN Gang. Statistical analysis and application of wind field and sea wave field in South China Sea[D]. Dalian:Dalian University of Technology,2018. [9] HENDERSON R. Design,simulation,and testing of a novel hydraulic power take off system for the Pelamis wave energy converter[J]. Renewable Energy,2006,31(2):271-283. [10] SHENG S,WANG K,LIN H,et al. Model research and open sea tests of 100 kW wave energy convertor Sharp Eagle Wanshan[J]. Renewable Energy,2017,113:587-595. [11] 宋保维,丁文俊,毛昭勇.基于波浪能的海洋浮标发电系统[J].机械工程学报,2012,48(12):139-143. SONG Baowei,DING Wenjun,MAO Zhaoyong. Conversion system of ocean buoys based on wave energy[J]. Journal of Mechanical Engineering,2012,48(12):139-143. [12] PARSA K,MEKHICHE M,SAROKHAN J,et al. Performance of OPT's commercial PB3 PowerBuoyTM during 2016 ocean deployment and comparison to projected model results[C]//American Society of Mechanical Engineers. 36th International Conference on Ocean,Offshore and Arctic Engineering,June 25-30,2017,Trondheim,Norway. 2017:1-7. [13] HART P. Autonomous PowerBuoys generate power for ocean applications[J]. Sea Technology,2012,53(4):10-12. [14] 李云飞,耿江军,汤添益,等.面向新能源浮标的平面摆式波浪能收集装置研究[J].机械工程学报,2021,57(12):275-284. LI Yunfei,GENG Jiangjun,TANG Tianyi,et al. Study on water wave energy harvester for clean energy buoys[J]. Journal of Mechanical Engineering,2021,57(12):275-284. [15] 高红,梁睿智.波浪能捕获液压系统的特性研究[J].机械工程学报,2020,56(18):180-187. GAO Hong,LIANG Ruizhi. Performance investigation of hydraulic wave energy capture system[J]. Journal of Mechanical Engineering,2020,56(18):180-187. [16] 刘常海,胡敏,杨庆俊,等.波浪能发电半物理仿真试验技术研究[J].机械工程学报,2021,57(10):286-295. LIU Changhai,HU Min,YANG Qingjun,et al. Hardware-in-the-loop simulation technology of wave power generation[J]. Journal of Mechanical Engineering,2021,57(10):286-295. [17] 高红,肖杰.基于模糊PI的波浪能液压转化系统平稳控制研究[J].机械工程学报,2021,57(10):267-276. GAO Hong,XIAO Jie. Research on stabilization control of wave energy hydraulic conversion system based on fuzzy-PI[J]. Journal of Mechanical Engineering,2021,57(10):267-276. [18] FALCÃO A F O. Phase control through load control of oscillating-body wave energy converters with hydraulic PTO system[J]. Ocean Engineering,2008,35:358-366. [19] CARGO C J,PLUMMER A R,HILLIS A J,et al. Determination of optimal parameters for a hydraulic power take-off unit of a wave energy converter in regular waves[J]. Proceedings of the Institution of Mechanical Engineers,Part A:Journal of Power and Energy,2012,226:98-111. [20] BABARIT A,GUGLIELMI M,CLÉMENT A H. Declutching control of a wave energy converter[J]. Ocean Engineering,2009,36:1015-1024. [21] GASPAR J F,STANSBY P K,CALVÁRIO M,et al. Hydraulic power take-off concept for the M4 wave energy converter[J]. Applied Ocean Research,2021,106:102462. [22] HENDERSON R. Design,simulation,and testing of a novel hydraulic power take-off system for the Pelamis wave energy converter[J]. Renewable Energy,2006,31:271-283. [23] MASTRICOLA N P,DREYER J T,SINGH R. Analytical and experimental characterization of nonlinear coned disk springs with focus on edge friction contribution to force-deflection hysteresis[J]. Mechanical Systems and Signal Processing,2017,91:215-232. [24] CUMMINS W E. The impulse response function and ship motions[J]. Schiffstechnik,1962,9:101-109. [25] TAGHIPOUR R,PEREZ T,MOAN T. Hybrid frequency-time domain models for dynamic response analysis of marine structures[J]. Ocean Engineering,2008,35:685-705. [26] WU J,YAO Y,ZHOU L,et al. Real-time latching control strategies for the solo Duck wave energy converter in irregular waves[J]. Applied Energy,2018,222:717-728. [27] CASTRO F A,CHIANG L E. Design optimization and experimental validation of a two-body wave energy converter with adjustable power take-off parameters[J]. Energy for Sustainable Development,2020,56:19-32. [28] HENRIQUES J C C,LOPES M F P,GOMES R P F,et al. On the annual wave energy absorption by two-body heaving WECs with latching control[J]. Renewable Energy,2012,45:31-40. [29] NIEGEMANN J,DIEHL R,BUSCH K. Efficient low-storage Runge-Kutta schemes with optimized stability regions[J]. Journal of Computational Physics,2012,231:364-372. [30] LOPES A J P P G,ABRANTES J R C B,BENTO J G S E S. A simplified model for expedient computational assessment of the novel REEFS wave energy converter power output[J]. Renewable Energy,2020,157:43-54. |