[1] 秦海勤,张耀涛,徐可君.双转子-支承-机匣耦合系统碰摩振动响应分析及试验验证[J].机械工程学报,2019,55(19):75-83.QIN Haiqin,ZHANG Yaotao,XU Kejun. Rubbing vibration response theoretical analysis and experimental verification for a double rotor support casing system[J]. Journal of Mechanical Engineering,2019,55(19):75-83. [2] 刘佳杭.基于振动分析的航空发动机转子系统故障诊断研究[D].天津:中国民航大学,2020.LIU Jiahang. Research on fault diagnosis of aeroengine rotor system based on vibration analysis[D]. Tianjin:Civil Aviation University of China,2020. [3] 唐建蒙.基于压缩感知的旋转机械冲击型故障诊断方法研究[D].广州:华南理工大学,2019.TANG Jianmeng. A research for diagnosis method of rotary machinery impact fault signals based on compressive sensing[D]. Guangzhou:South China University of Technology,2019. [4] 陈予恕,张华彪.航空发动机整机动力学研究进展与展望[J].航空学报,2011,32(8):1371-1391.CHEN Yushu,ZHANG Huabin. Review and prospect on the research of dynamics of complete aero-engine systems[J]. Acta Aeronautica et Astronautica Sinica,2011,32(8):1371-1391. [5] 胡爱军,许莎,向玲,等.滚动轴承外圈多点故障特征分析[J].机械工程学报,2020,56(21):110-120.HU Aijun,XU Sha,XIANG Ling,et al. Characteristic analysis of multi-point faults on the outer race of rolling element bearing[J]. Journal of Mechanical Engineering,2020,56(21):110-120. [6] QIN Y. A new family of model-based impulsive wavelets and their sparse representation for rolling bearing fault diagnosis[J]. IEEE Transactions on Industrial Electronics. 2018,65(3):2716-2726. [7] 赵德尊,王天杨,褚福磊.基于自适应广义解调变换的滚动轴承时变非平稳故障特征提取[J].机械工程学报,2020,56(3):80-87.ZHAO Dezun,WANG Tianyang,CHU Fulei. Adaptive generalized demodulation transform based rolling bearing time-varying nonstationary fault feature extraction[J]. Journal of Mechanical Engineering,2020,56(3):80-87. [8] HUANG N E,SHEN Z,LONG S R,et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. The Royal Society,1998,454:903-995. [9] ZHENG J,PAN H,LIU T,et al. Extreme-point weighted mode decomposition[J]. Signal Process,2018,142:366-374. [10] LIU H,HUANG W,WANG S,et al. Adaptive spectral kurtosis filtering based on Morlet wavelet and its application for signal transients detection[J]. Signal Process,2014,96:118-124. [11] LI C,ZHANG S H,QIN Y,et al. A systematic review of deep transfer learning for machinery fault diagnosis[J]. Neurocomputing,2020,407:121-135. [12] 陈雪峰,王诗彬,程礼.航空发动机快变信号的匹配同步压缩变换研究[J].机械工程学报,2019,55(13):13-22.CHEN Xuefeng,WANG Shibin,CHENG Li,et al. Matching synchrosqueezing transform for aero-engine's signals with fast varying instantaneous frequency[J]. Journal of Mechanical Engineering,2019,55(13):13-22. [13] 俞坤,罗志涛,李鸿飞,等.广义参数化同步压缩变换及其在旋转机械振动信号中的应用[J].机械工程学报,2019,55(11):149-159.YU Kun,LUO Zhitao,LI Hongfei,et al. General parameterized synchrosqueezing transform and its application in rotating machinery vibration signal[J]. Journal of Mechanical Engineering,2019,55(11):149-159. [14] DAUBECJIES I,LU J,WU H T,et al. Synchrosqueezed wavelet transforms:An empirical mode decomposition-like tool[J]. Applied Computer Harmonic Analysis,2011,30(2):243-261. [15] OBERLIN T,MEIGNEN S,PERRIER V. Second-order synchrosqueezing transform or invertible reassignment?Towards ideal time-frequency representations[J]. IEEE Transactions on Signal Process,2015,63(5):1335-1344. [16] PHAM D,MEIGNEN S. High-order synchrosqueezing transform for multicomponent signals analysis-with an application to gravitational-wave signal[J]. IEEE Transactions on Signal Process,2017,65(12):3168-3178. [17] HE D,CAO H,WANG S,et al. Time-reassigned synchrosqueezing transform:The algorithm and its applications in mechanical signal processing[J]. Mechanical Systems and Signal Process,2019,117:255-279. [18] YU G,LIN T,WANG Z,et al. Time-reassigned multisynchrosqueezing transform for bearing fault diagnosis of rotating machinery[J]. IEEE Transactions Industrial Electronics,2021,68(2):1486-1496. [19] YU G, WANG Z,ZHAO P,et al. Local maximum synchrosqueezing transform:An energy-concentrated time-frequency analysis tool[J] Mechanical Systems and Signal Process,2019,117:537-552. [20] HE Zhoujie,TU Xiaotong,BAO Wenjie,et al. Gaussian-modulated linear group delay model:Application to second-order time-reassigned synchrosqueezing transform[J]. Signal Processing,2020,167:107275. |