Journal of Mechanical Engineering ›› 2021, Vol. 57 ›› Issue (24): 13-38.doi: 10.3901/JME.2021.24.013
Previous Articles Next Articles
SHANG Yaoxing1,2,3, LI Yao1,2, YU Tian2,3, JIANG Chaofan1,2, WANG Yeshuo1,2, YANG Guang4, KONG Xiangdong5, JIAO Zongxia1,2,6
Received:
2021-05-31
Revised:
2021-10-20
Online:
2021-12-20
Published:
2022-02-28
CLC Number:
SHANG Yaoxing, LI Yao, YU Tian, JIANG Chaofan, WANG Yeshuo, YANG Guang, KONG Xiangdong, JIAO Zongxia. Review and Challenges of Lightweight Composite Hydraulic Cylinder[J]. Journal of Mechanical Engineering, 2021, 57(24): 13-38.
[1] 孔祥东,朱琦歆,姚静,等. 高端移动装备液压元件与系统轻量化发展综述[J]. 燕山大学学报,2020,44(3):203-317. KONG Xiangdong,ZHU Qixin,YAO Jing,et al. Reviews of lightweight development of hydraulic components and systems for high-level mobile equipment[J]. Journal of Yanshan University,2020,44(3):203-317. [2] 王伟,袁雷,王晓巍. 飞机增材制造制件的宏观结构轻量化分析[J]. 飞机设计,2015,35(3):24-28. WANG Wei,YUAN Lei,WANG Xiaowei. Macro-structural lightweight analysis for aircraft parts made by additive manufacturing technology[J]. Aircraft Design,2015,35(3):24-28. [3] 左美燕. 轻量化臂架液压缸设计[J]. 液压气动与密封,2019,39(10):75-77,81. ZUO Meiyan. Design of lightweight boom hydraulic cylinder[J]. Hydraulics Pneumatics & Seals,2019,39(10):75-77,81. [4] SOLAZZI L,BUFFOLI A. Telescopic hydraulic cylinder made of composite material[J]. Applied Composite Materials,2019,26(4):1189-1206. [5] SOLAZZI L. Feasibility study of hydraulic cylinder subject to high pressure made of aluminum alloy and composite material[J]. Composite Structures,2019,209:739-746. [6] ELASSWAD M,TAYBA A,ABDELLATIF A,et al. Development of lightweight hydraulic cylinder for humanoid robots applications[J]. Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science,2018,232(18):3351-3364. [7] LUBECKI M. Selected design issues in hydraulic cylinder made of composite materials[C]//VIII Ogólnokrajowa Konferencja Naukowa MŁODZI NAUKOWCY W POLSCE-BADANIA I ROZWÓJ,2018. [8] 张婷婷. 汉臣液压新品介绍-据汉臣(上海)液压设备有限公司专家习青锋报告整理[J]. 液压气动与密封,2018,38(8):94-98. ZHANG Tingting. Introduction of new products of Hanchen hydraulic According to the report of Xi Qingfeng,an expert of Hänchen (Shanghai) hydraulic equipment Co.,Ltd[J]. Hydraulics Pneumatics & Seals,2018,38(8):94-98. [9] CHE Lixin,YANG Ruqing,GU Yi. Design and analysis of the insulated hydraulic cylinder applied in hot-line sweeping robot[J]. Journal of Shanghai Jiaotong University,2006,40(3):435-438. [10] Lightraulics® Composite Tool Cylinders:Making on-site operations lighter[EB/OL].[2021-06-06]. https://www.parker.com [11] CARSTEN M. CFK炭纤维增强合成材料液压缸[J]. 现代制造,2002(16):143-144. CARSTEN M. CFK carbon fiber reinforced composite hydraulic cylinder[J]. Modern Manufacturing,2002(16):143-144. [12] PARKER. Lightraulics® Composite hydraulics ultralightweight cylinders for yachting applications[EB/OL].[2020-12-15]. https://www.parker.com/literature/1404-B-UK Yachting cylinders. [13] HUANG Zhipeng,KONG Xiangdong,YU Bin,et al. Lightweight design method of electro-Hydraulic actuator based on rib structure[C]//The 10th international conference on fluid power transmission and control(ICFP 2021),April 11-13,2021,Hangzhou,China:S1405. [14] BARASUOL V,VILLARREAL-MAGANA O A,SANGIAH D,et al. Highly-integrated hydraulic smart actuators and smart manifolds for high-bandwidth force control[J]. Frontiers in Robotics and AI,2018,5:51. [15] HUANG H,ZHANG J,XU B,et al. Topology optimization design of a lightweight integrated manifold with low pressure loss in a hydraulic quadruped robot actuator[J]. Mechanical Sciences,2021,12(1):249-257. [16] STRYCZEK J. Plastics a new trend in design of fluid power elements and systems[C]//International Scientific- Technical Conference on Hydraulic and Pneumatic Drives and Control. Springer,Cham,2020:440-452. [17] 陈彦辉. 35 MPa车用全缠绕复合材料气瓶设计及充气温升数值模拟[D]. 太原:太原理工大学,2018. CHEN Yanhui. Design of 35 MPa fully-wrapped composite cylinder for vehicle and numerical simulation on the temperature rise during the filling process[D]. Taiyuan:Taiyuan University of Technology,2018. [18] 孟剑. 碳纤维复合材料高压储氢容器力学模型分析与抗疲劳研究[D]. 杭州:浙江大学,2006. MENG Jian. Mechanical model analysis and anti fatigue research of carbon fiber composite high pressure hydrogen storage vessel[D]. Hangzhou:Zhejiang University,2006. [19] HERAKOVICH C T. Mechanics of fibrous composites[M]. Amsterdam:Elsevier,1991. [20] HUFENBACH W,ULBRICHT A,et al. Lightweight hydraulic components in novel multi-material-design for mobile applications[C]//9th International Fluid Power Conference,Aachen,March 24-26,2014. [21] ULBRICHT I A,BARFUß D I D,BIRKE D I M,et al. Potential and application fields of lightweight hydraulic components in multi-material design[C]//10th International Fluid Power Conference,Dresden,Group 7-Hydraulic Components,Paper 7-4,463-471,2016. [22] Steelhead Composites (2018) Hydraulic Accumulators[EB/OL].[2021-06-06]. https://steelheadcomposites.com/hydraulic-accumulators/ [23] CMH-17协调委员会. 复合材料手册:聚合物基复合材料材料应用设计和分析[M]. 上海:上海交通大学出版社,2015. CMH-17 Coordination Committee. Conposite material handbook:Polymer matrix composites materials usage,design and analysis[M]. Shanghai:Shanghai Jiaotong University Press,2015. [24] SOUTIS C. Carbon fiber reinforced plastics in aircraft construction[J]. Materials Science and Engineering:A,2005,412(1-2):171-176. [25] FARUK,O,TJONG,J,SAIN,M. Lightweight and sustainable materials for automotive applications[M]. Boca Raton,FL,USA,CRC Press,Taylor & Francis Group,2017. [26] HASHIMOTO H,TAMURA M,ICHIRYU K. Newly developed carbon fiber reinforced plastics (CFRP) hydraulic cylinder incorporated stroke sensor[C]//Proceedings of the JFPS International Symposium on Fluid Power. The Japan Fluid Power System Society,1989(1):525-531. [27] NIKAS G K. Eighty years of research on hydraulic reciprocating seals:Review of tribological studies and related topics since the 1930s[J]. Proceedings of the Institution of Mechanical Engineers,Part J:Journal of Engineering Tribology,2010,224(1):1-23. [28] 高凌云.日本用碳纤维制造液压缸[J]. 液压工业,1988(1):51. GAO Lingyun. Hydraulic cylinder made of carbon fiber in Japan[J]. Hydraulic Industry,1988(1):51. [29] BENTON T L,DIRKIN W,D DOUGLASS,et al. Fluid actuator including composite cylinder assembly:US,US4685384 A[P]. 1987-08-11. [30] SOLAZZI L. Design and experimental tests on hydraulic actuator made of composite material[J]. Composite Structures,2020,232:111544. [31] SOLAZZI L,BUFFOLI A,FORMICOLA R. The multi-parametric weight optimization of a hydraulic actuator[C]//Actuators. Multidisciplinary Digital Publishing Institute,2020,9(3):60. [32] SOLAZZI L. Stress variability in multilayer composite hydraulic cylinder[J]. Composite Structures,2021,259:113249. [33] SOLAZZI L,BUFFOLI A. Fatigue design of hydraulic cylinder made of composite material[J]. Composite Structures,2021,277:114647. [34] El ASSWAD M,ALFAYAD S,KHALIL K. Experimental estimation of friction and friction coefficient of a lightweight hydraulic cylinder intended for robotics applications[J]. International Journal of Applied Mechanics,2018,10(8):1850080. [35] WERMER H,ANDREAS U,OLAF H,et al. Development of lightweight hydraulic components in innovative fibre composite design(R). Germany:Institute of Lightweight Structures and Polymer Technology (ILK),Technical University of Dresden,2012. [36] WERNER H,M.GUDE,ANDREAS U. Lightweight aircraft components in multi-material design for small series production[R]. Stade,Norway:The 6th International CFK-Valley Stade Convention "Productivity and Economic Efficiency". June 12-13,2012. [37] SKOWROŃSKA J,KOSUCKI A,STAWIŃSKI Ł. Overview of materials used for the basic elements of hydraulic actuators and sealing systems and their surfaces modification methods[J]. Materials,2021,14(6):1422. [38] SKOWROŃSKA J,ZACZYŃSKI J,KOSUCKI A,et al. Modern materials and surface modification methods used in the manufacture of hydraulic actuators[C]//International Scientific-Technical Conference on Hydraulic and Pneumatic Drives and Control. Springer,Cham,2020:427-439. [39] MANTOVANI S. Feasibility analysis of a double-acting composite cylinder in high-pressure loading conditions for fluid power applications[J]. Applied Sciences,2020,10(3):826. [40] LUBECKI M,STOSIAK M,GAZIŃSKA M. Numerical and experimental analysis of the base of a composite hydraulic cylinder made of PET[C]//International Scientific-Technical Conference on Hydraulic and Pneumatic Drives and Control. Springer,Cham,2020:396-405. [41] BŁAŻEJEWSKI W,BARCIKOWSKI M,LUBECKI M,et al. The mechanical investigation of filament-wound cfrp structures subjected to different cooling rates in terms of compressive loading and residual stresses-An experimental approach[J]. Materials,2021,14(4):1041. [42] MAYER P,DMITRUK A,LUBECKI M,et al. Adhesion of epoxy coatings with micrometer size fillers to steel substrate[J]. Journal of Theoretical and Applied Mechanics,2020,58(2):437-443. [43] LUBECKI M,STOSIAK M,LEŚNIEWSKI T. Comparative studies of tribological properties of selected polymer resins for use in hydraulic systems[J]. Tribologia,2019:31-37. [44] SCHOLZ S,KROLL L. Nanocomposite glide surfaces for FRP hydraulic cylinders-Evaluation and test[J]. Composites Part B:Engineering,2014,61:207-213. [45] SCHOLZ S,KROLL L,SCHETTLER F. Nanoparticle reinforced epoxy gelcoats for fiber-plastic composites under multiple load[J]. Progress in Organic Coatings,2014,77(7):1129-1136. [46] SCHOLZ S,KROLL L. Entwicklung diffusionsdichter Schichtsysteme für Hydraulikzylinder in CFK- Bauweise[C/CD]//Proceedings,euroLITE,Salzburg,2009. [47] SCHOLZ S. Epoxidharzbasierte Nanokomposit-Schichten für mechanisch,tribologisch und medial belastete Faser-Kunststoff-Verbunde. Dissertation,TU Chemnitz,2012. [48] SCHOLZ S,SCHETTLER F,KROLL L. Verwendung eines Gel-Coats und Gel-Coat aufweisender Faserkunststoff-Zylinder. TU Chemnitz. Patent:DE 102011052000 B3,11th October 2012. [49] SCHOLZ S,KROLL L,ULKE L. Mechanisches Verhalten mehrschichtiger Faserverbund-Hydraulikzylinder mit innerer Funktionsoberfläche[C]//Tagungsband,Werkstofftechnisches Kolloquium,TU Chemnitz,2009. [50] RITCHIE J,MUMTAHINA U,RASUL M,et al. Alternative materials in hydraulic cylinder design-application of carbon fibre components[J]. Mechanical Engineering Research Journal,2013,9:43-47. [51] SIEGFARTH M,PUSCH T P,PFEIL A,et al. Multi-material 3D printed hydraulic actuator for medical robots[J]. Rapid Prototyping Journal,2020,6(26):1019-1026. [52] STRYCZEK P,PRZYSTUPA F,BANAŚ M. Research on series of hydraulic cylinders made of plastics[C]//2018 Global Fluid Power Society PhD Symposium (GFPS). IEEE,2018:1-7. [53] STRYCZEK J,BANAŚ M,KRAWCZYK J,et al. The fluid power elements and systems made of plastics[J]. Procedia Engineering,2017,176:600-609. [54] ZHANG J,BAO J,ZHANG D,et al. Inlaid connection of carbon fibre reinforced plastic cylinder[C]//2016 IEEE International Conference on Aircraft Utility Systems (AUS). IEEE,2016:1024-1029. [55] 徐兵,鲍静涵,张军辉,等. 一种采用碳纤维复合材料联接及承载的可拆卸液压缸:中国,CN106151161B[P]. 2016-11-23. XU Bing,BAO Jinghan,ZHANG Junhui,et al. A detachable hydraulic cylinder with connection structure of CFRP:China,CN106151161B[P]. 2016-11-23. [56] 张军辉,鲍静涵,徐兵,等. 一种具有集成联接结构的碳纤维-树脂复合材料液压缸缸筒:中国,CN106523702A[P]. 2017-03-22. ZHANG Junhui,BAO Jinghan,XU Bing,et al. A CFRP hydraulic cylinder with integrated connection structure:China,CN106523702A[P]. 2017-03-22. [57] ZONG Huaizhi,ZHANG Junhui,et.al. Investigation on the combination winding technology of carbon fiber reinforced polymer hydraulic cylinder[C]//The 21th ICFMCE,November 6-8,2020,Chongqing University of Technology,Chongqing,China. [58] YAO Li,YESHUO Wang,YAOXING Shang,et al. Design and analysis on light weight carbon fibre-reinforced hydraulic Cylinder[C]//The 10th international conference on fluid power transmission and control(ICFP 2021),April 11-13,2021,Hangzhou,China:S1404. [59] 欧天华. 碳纤维增强液压缸结构设计与力学性能分析[D]. 北京:北京航空航天大学,2020. OU Tianhua. Structural design and mechanical properties analysis of carbon fiber reinforced hydraulic cylinder[D]. Beijing:Beihang University,2020. [60] 于天,尚耀星,李瑶,等. 一种轻量化活塞:中国,CN112324743A[P]. 2021-02-05. YU Tian,SHANG Yaoxing,LI Yao,et al. A lightweight piston:China,CN112324743A[P]. 2021-02-05. [61] 焦宗夏,李瑶,于天,等. 轻量化分瓣式活塞杆结构:中国,CN112797048A[P]. 2021-05-14. JIAO Zongxia,LI Yao,YU Tian,et al. Lightweight split piston rod structure:China,CN112797048A[P]. 2021-05-14. [62] 尚耀星,李瑶,王业硕,等. 轻量化一体式活塞杆结构:中国,CN113027853A[P]. 2021-06-25. SHANG Yaoxing,LI Yao,WANG Yeshuo,et al. Lightweight integrated piston rod structure:China,CN113027853A[P]. 2021-06-25. [63] 于水鑫. 碳纤维复合材料表面改性环氧涂层技术研究[D]. 北京:北京航空航天大学,2020. YU Shuixin. Study on modified epoxy coating on the surface of carbon fiber composites[D]. Beijing:Beihang University,2020. [64] 周泽豫. 改性环氧涂层尺寸精度影响因素的研究[D]. 北京:北京航空航天大学,2021. ZHOU Zeyu. Study on the factors affecting the dimensional accuracy of modified Epoxy Resin coating[D]. Beijing:Beihang University,2021. [65] 郑翰聪. 碳纤维复合材料表面高固含量环氧涂层的摩擦性能研究[D]. 北京:北京航空航天大学,2021. ZHENG Hancong. Friction properties of high solid content epoxy coating on carbon fiber composites[D]. Beijing:Beihang University,2021. [66] 孟玲宇,陈家正,纪丹阳. 碳纤维复合材料在液压油缸中的应用[J]. 纤维复合材料,2018,35(2):60-62. MENG Lingyu,CHEN Jiazheng,JI Danyang. Application of carbon fiber composites in hydraulic cylinder[J]. Fiber Composites,2018,35(2):60-62. [67] 汪志南,陈奎生,湛从昌. 液压缸CFRP缸筒结构开发及其强度理论研究[J]. 液压与气动,2018(7):1-7. WANG Zhinan,CHEN Kuisheng,ZHAN Congchang. Structural development and strength theory research of hydraulic cylinder CFRP tube[J]. Chinese Hydraulics & Pneumatics,2018(7):1-7. [68] OLAF S,BRUCE O,JACQUELINE P. Composite high pressure hydraulic actuators for lightweight applications(R)[C/CD]//Aachen,Germany:The 9th International Fluid Power Conference. March 24-26,2014. [69] OTTE B,STELLING O,MÜller C. High pressure lightweight hydraulic fully composite piston accumulators[C/CD]//8th International Fluid Power Conference,8. IFK,Dresden,Germany,March 26-28,2012. [70] PARKER H. Lightraulics actuators:High pressure hydraulics for lightweight applications[EB/OL]. https://www.parker.com/literature/CompositeCylinders_1410-UK.2015-11-3. [71] 张婷婷. 国外液压研发动态-据中国液压气动密封件工业协会专家委员会特别顾问张海平专家报告整理[J]. 液压气动与密封,2016,36(3):98-102. ZHANG Tingting. Foreign hydraulic R & D trends-According to the expert report of Zhang Haiping,special consultant of expert committee of China hydraulic and pneumatic seal industry association[J]. Hydraulics Pneumatics & Seals,2016,36(3):98-102. [72] Hänchen. H-CFRP hydraulic cylinders[EB/OL]. https://www.haenchen-hydraulic.com,2018-7-12. [73] TUBINGEN. CFK液压油缸提高机械设备移动性能[J]. 现代制造,2016(34):30-31. TUBINGEN. CFK hydraulic cylinder improves the mobility of mechanical equipment[J]. Modern Manufacturing,2016(34):30-31. [74] 习青锋. 混合碳纤维液压缸[J]. 流体传动与控制,2015(3):63-64. XI Qingfeng. H-CFRP hydraulic cylinder[J]. Fluid Transmission and Control,2015(3):63-64. [75] 张海平. 2017汉诺威工业博览会见闻[J]. 液压气动与密封,2017. ZHANG Haiping. 2017 news of hanover industrial fair[J]. Hydraulics Pneumatics & Seals,2017. [76] Polygon PolySlide® composite pneumatic and hydraulic Cylinders[online] Available at:https://www.polygoncomposites.com/products/fluid-power[Accessed 07.12.2018] [77] HULL D,LEGG M J,SPENCER B. Failure of glass/polyester filament wound pipe[J]. Composites. 1978,9:17-24. [78] SPENCER B,HULL D. Effect of winding angle on the failure of filament wound pipe[J]. Composites,1978,9:263-271. [79] ROSENOW M W K.Wind angle effects in glass fibre reinforced polyester filament wound pipes[J]. Composites,1984,15(2):144-152. [80] SODEN P D,KITCHING R,TSE P C. Experimental failure stresses for ±55° filament wound glass fiber reinforced plastic tubes under biaxial loads[J]. Composites,1989,20:125-135. [81] MISTRY J,GIBSON AG,WU Y S. Failure of composite cylinders under combined external pressure and axial loading[J]. Compos. Struct.,1992,22:193-200. [82] 解江,马骢瑶,霍雨佳,等. 纤维铺层角度对复合材料薄壁圆管轴向压溃吸能特性影响研究[J]. 振动与冲击,2018,37(328):205-211. XIE Jiang,MA Congyao,HUO Yujia,et al. Effect of ply orientations on energy-absorbing characteristics of composite thin-walled circular tubes under axial compression[J]. Journal of Vibration and Shock,2018,37(328):205-211. [83] WILD P M,VICKERS G W. Analysis of filament-wound cylindrical shells under combined centrifugal,pressure and axial loading[J]. Compos,Part A., 1997,28(1):47-55. [84] LEKHNITSKII S G. Theory of elasticity of an anisotropic body[M]. Moskow:MIR Publishers. 1981. [85] AJIT K R. Response of thick laminated composite rings to thermal stresses[J]. Compos. Struct.,1991,18:125-138. [86] STARBUCK J M,EBERLE C. Analytical solution for the design of spoolable composite tubing[C/CD]//Third International Conference on Composite Materials for Offshore Operations,Houston (TX),2000. [87] XIA M,TAKAYANAGI H,KEMMOCHI K. Analysis of multilayered filament-wound composite pipes under internal pressure[J]. Compos Struct. 2001,53:483-491. [88] TAKAYANAGI H,XIA M,KEMMOCHI K. Stiffness and strength of filament-wound fiber-reinforced composite pipes under internal pressure[J]. Advanced Composite Materials,2002,11(2):137-149. [89] XIA M,KEMMOCHI K,TAKAYANAGI H. Analysis of filament-wound sandwich pipe under internal pressure[J]. Advanced Composite Materials,2000,9(3):223-239. [90] XIA M,TAKAYANAGI H,KEMMOCHI K. Analysis of transverse loading for laminated cylindrical pipes[J]. Composite Structures,2001,53(3):279-285. [91] XIA M,KEMMOCHI K,TAKAYANAGI H. Analysis of filament wound fibre-reinforced sandwich pipe under combined internal pressure and thermomechanical loading[J]. Compos. Struct.,2001,51:273-283. [92] XIA M,TAKAYANAGI H,KEMMOCHI K. Bending behavior of filament-wound fiber-reinforced sandwich pipes[J]. Compos. Struct., 2002,56:201-210. [93] XIA M,TAKAYANAGI H,KEMMOCHI K. Optimal design of a thick-walled sandwich pipe[J]. Advanced Composite Materials,2000,9(4):349-361. [94] BAKAIYAN H,HOSSEINI H,AMERI E. Analysis of multi-layered filament wound composite pipes under combined internal pressure and thermomechanical loading with thermal variations[J]. Composite Structures,2009,88(4):532-541. [95] NATSUKI T,TAKAYANAGI H,TSUDA H. Prediction of bending strength for filament-wound composite pipes[J]. J. Reinf. Plast. Compos., 2003,22(8):695-710. [96] MENSHYKOVA M,GUZ IA. Stress analysis of layered thickwalled composite pipes subjected to bending loading[J]. Int. J. Mech. Sci.,2014,88:289-299. [97] ANSARI R,ALISAFAEI F,GHAEDI P. Dynamic analysis of multilayered filament-wound composite pipes subjected to cyclic internal pressure and cyclic temperature[J]. Compos. Struct., 2010,92:1100-1109. [98] BOUHAFS M,SEREIR Z,CHATEAUNEUF A. Probabilistic analysis of the mechanical responce of thick composite pipes under internal pressure[J]. Int. J. Press. Vessels Piping,2012,95:7-15. [99] PARNAS L,KATLRCL N. Design of fiber-reinforced composite pressure vessels under various loading conditions[J]. Composite structures,2002,58(1):83-95. [100] AKKERMAN M. Analysis of the mechanical properties of a reinforced thermoplastic pipe (RTP)[J]. Composites Part A:Applied Science and Manufacturing,2005,36(2):291-300. [101] GUEDES R M. Nonlinear viscoelastic analysis of thick-walled cylindrical composite pipes[J]. Int. J. Mech. Sci., 2010,52:1064-1073. [102] LIU C,SHI Y. Design optimization for filament wound cylindrical composite internal pressure vessels considering process-induced residual stresses[J]. Composite Structures,2020,235:111755. [103] GUZ I A,MENSHYKOVA M,PAIK J K. Thick-walled composite tubes for offshore applications:an example of stress and failure analysis for filament-wound multi-layered pipes[J]. Ships and Offshore Structures,2017,12(3):304-322. [104] NOWAK T,SCHMIDT J. Non-linear mechanical analysis of the composite overwrapped cylinder for hydraulic applications[J]. Advances in Manufacturing Science & Technology,2013,37(4):31-48. [105] 王耀先. 复合材料力学与结构设计[M]. 上海:华东理工大学出版社,2012. WANG Yaoxian. Composite mechanics and structural design[M]. Shanghai:East China University of science and Technology Press,2012. [106] PRAMANIK A,BASAK A K,DONG Y,et al. Joining of carbon fibre reinforced polymer (CFRP) composites and aluminium alloys-A review[J]. Composites Part A:Applied Science and Manufacturing,2017,101:1-29. [107] DAWEI Z,QI Z,XiAOGUANG F,et al. Review on joining process of carbon fiber-reinforced polymer and metal:Methods and joining process[J]. Rare Metal Materials and Engineering,2018,47(12):3686-3696. [108] DAWEI Z,QI Z,XIAOGUANG F,et al. Review on joining process of carbon fiber-reinforced polymer and metal:Applications and outlook[J]. Rare Metal Mater. Eng.,2019,48:44-54. [109] 周祖德,黄向阳,胡业发,等. 一种碳纤维复合材料液压缸:中国,CN103727092A[P]. 2014-04-16. ZHOU Zude,HUANG Xiangyang,HU Yefa,et al. A kind of carbon fiber composite hydraulic cylinder:China,CN103727092A[P]. 2014-04-16. [110] TU W,WEN P,HOGG P,et al. Optimization of the protrusion geometry in comeldTM joints[J]. Composites Science & Technology,2011,71(6):868-876. [111] TU W,WEN P,GUILD F. The optimization of comeldTM joints:A novel technique for bonding composites and metal[J]. Lecture Notes in Engineering & Computer Science,2010,2184(1):134-141. [112] JUNG K W,KAWAHITO A Y,TAKAHASHI M,et al. Laser direct joining of carbon fiber reinforced plastic to aluminum alloy[J]. Journal of Laser Applications,2013,25(3):530-533. [113] ZHANG Z,SHAN J,TAN X,et al. Improvement of the laser joining of CFRP and aluminum via laser pre-treatment[J]. International Journal of Advanced Manufacturing Technology,2017,90:3465-3472. [114] ZHANG Z,SHAN J,TAN X. Evaluation of the CFRP grafting and its influence on the laser joining CFRP to aluminum alloy[J]. Journal of Adhesion Science & Technology,2017,32(4):1-17. [115] SHENG L Y,LAI C,XU Z F,et al. Effect of the surface texture on laser joining of a carbon fiber-reinforced thermosetting plastic and stainless steel[J]. Strength of Materials,2019,51(1):122-129. [116] PIPER G J. High pressure cylinder with locking end caps:U.S. Patent 5,622,098[P]. 1997-04-22. [117] GIANNAKOPOULOS I,BERNARD J,CHATZI P,et al. Connector:U.S. Patent 10,612,568[P]. 2020-04-07. [118] FAHEY M J,MUELLER C. End-fittings for composite tubes,method for joining fittings to the ends of composite tubes and composite tubes incorporating end-fitting:US,US20110186211 A1[P]. 2012-09-11. [119] LI X,WANG J,LI S. Method for manufacturing cylinder body of actuating cylinder and concrete pumping apparatus:Europe,EP2749776[P]. 2014-07-02. [120] 唐晓阳,倪刚亮,任国庆,等. 一种复合材料液压缸的缸筒:中国,CN208966762U[P]. 2019-06-11. TANG Xiaoyang,NI Gangliang,REN Guoliang,et al. A cylinder tube of a composite hydraulic cylinder:China,CN208966762U[P]. 2019-06-11. [121] 孙秀毅,王相凯,单保琴,等. 轻量化缸体结构:中国,CN206144888U[P]. 2019-06-11. SUN Xiuyi,WANG Xiangkai,SHAN Baoqin,et al. Lightweight cylinder structure:China,CN206144888 U[P]. 2019-06-11. [122] 曾盛渠,李韶茂,李瑶. 一种复合材料筒管及制造方法、液压缸筒、活塞杆:中国,CN103527549A[P]. 2014-01-22. ZENG Shengqu,LI Shaomao,LI Yao. The invention relates to a composite material bobbin,a manufacturing method,a hydraulic cylinder barrel and a piston rod:China,CN103527549A[P]. 2014-01-22. [123] 邓创华,任会礼,钟懿. 复合材料套筒和液压缸:中国,CN105673609A[P]. 2016-06-15. DENG Chuanghua,REN Huili,ZHONG Yi. Composite sleeve and hydraulic cylinder:China,CN105673609A[P]. 2016-06-15. [124] 郑传祥. 复合材料压力容器[M]. 北京:化学工业出版社,2006. ZHENG Chuanxiang. Composite pressure vessel[M]. Beijing:Chemical Industry Press,2006. [125] RAJAK D K,PAGAR D D,MENEZES P L,et al. Fiber-reinforced polymer composites:Manufacturing,properties,and applications[J]. Polymers,2019,11(10):1667. [126] PETERS S. Composite filament winding[M]. 2012,84-85. [127] MI J,YAO J. ESO-based adaptive robust control of 3-Axis winding of carbon fiber[C]//202039th Chinese Control Conference (CCC),Shenyang,China,2020:410-415. [128] JIA Q M,ZHENG M,XU C Z,et al. The mechanical properties and tribological behavior of epoxy resin composites modified by different shape nanofillers[J]. Polym Adv. Technol.,2006,17(3):168-173. [129] 范华志,刘帮才,王伟伟,等. 一种耐磨涂层轻质复合材料活塞杆及液压缸:中国,CN103398173A[P]. 2013-11-20. FAN Huazhi,LIU Bangcai,WANG Weiwei,et al. A kind of light composite piston rod with wear resistant coating and hydraulic cylinder:China,CN103398173A[P]. 2013-11-20. [130] KWON Y W,PONSHOCK T,MOLITORIS J D. Failure loading of metallic and composite cylinders under internal pressure loading[J]. Journal of Pressure Vessel Technology,2016,138:060909-1-060909-8. [131] HUFENBACH W,GUDE M,CZULAK A,et al. Development and implementation of an automatic integration system for fibre optic sensors in the braiding process with the objective of online-monitoring of composite structures[C]//Sensors and Smart Structures Technologies for Civil,Mechanical,and Aerospace Systems 2014. International Society for Optics and Photonics,2014,9061:906134. |
[1] | WANG Shuaishuai, DUAN Zhenjing, LIU Jiyu, LI Yuheng, WANG Ziheng, ZHOU Yuyang, LIU Xin, SONG Jinlong, SUN Jing. Study on the Machining Performance and Mechanism of Cold Plasma Coupled Micro-lubrication Micro-milling CFRP [J]. Journal of Mechanical Engineering, 2024, 60(9): 338-350. |
[2] | YANG Yang, WANG Zekui, CHEN Chen, MA Hua, YANG Zhinan, ZHANG Fucheng. Effect of Ni and Cu Alloying on Microstructure and Mechanical Properties of Fe-Mn-Al-C Austenitic Lightweight Steel [J]. Journal of Mechanical Engineering, 2024, 60(8): 154-164. |
[3] | LI Kun, JI Chen, BAI Shengwen, JIANG Bin, PAN Fusheng. Research Status and Prospects of Wire-arc Additive Manufacturing Technology for High-performance Magnesium Alloys [J]. Journal of Mechanical Engineering, 2024, 60(7): 289-311. |
[4] | LIU Changhai, ZHAO Zhixue, HU Min, YAN Hao, YANG Qingjun, BAO Gang, ZENG Yishan. Power-capture Performance of the Hydraulic-type Wave Energy Converter Based on the Individual Metering Technology [J]. Journal of Mechanical Engineering, 2024, 60(6): 386-397. |
[5] | SHI Jian, LIU Dong, WANG Shaoping. Digital Twin for Complex Electromechanical-hydraulic System PHM:A Review [J]. Journal of Mechanical Engineering, 2024, 60(4): 66-81. |
[6] | TIAN Bian, LIU Jiangjiang, ZHANG Zhongkai, LIU Zhaojun, MA Rong, LIN Qijing, JIANG Zhuangde. Study on High Precision Thin Film Temperature Sensor Based on Multi-node Array Structure [J]. Journal of Mechanical Engineering, 2024, 60(4): 92-100. |
[7] | ZONG Huaizhi, AI Jikun, ZHANG Junhui, JIANG Lei, TAN Shujie, LIU Yuxian, SU Qi, XU Bing. Lightweight Design of Limb Leg Units for Hydraulic Quadruped Robots by Topology Optimization and Lattice Filling [J]. Journal of Mechanical Engineering, 2024, 60(4): 420-429. |
[8] | LIU Changhai, FEI Junkai, ZHAO Zhixue, WU Junguo, HU Min, GAO Wenzhi, ZENG Yishan. Simulation Study on the Performance of Hydraulic Power Take-off System of Wave Energy Conversion Based on the Volumetric Regulation and Energy-storage Principle [J]. Journal of Mechanical Engineering, 2024, 60(20): 327-338. |
[9] | NIU Shanshuai, WANG Junzheng, ZHAO Jiangbo, SHEN Wei. Adaptive Robust Control with Unknown Dead-zone Compensation for Pump Controlled Electro-hydraulic Servo System [J]. Journal of Mechanical Engineering, 2024, 60(18): 327-337. |
[10] | QIN Tao, LI Yunhua, FAN Rujun. Trajectory Optimization of Autonomous Mining for Powerful Rocker Arm Hydraulic Shovels [J]. Journal of Mechanical Engineering, 2024, 60(18): 374-384. |
[11] | WANG Wenlin, ZHANG Zibo, LI Yingzi, WU Yongming, WANG Qixin, LIANG Ruoshuang. Testing and Data Analysis Platform for the Reliability Research of Hydraulic Cylinder [J]. Journal of Mechanical Engineering, 2024, 60(18): 385-393. |
[12] | XU Yuanzhi, JIAO Zongxia, FENG Hao, XIE Yan, YANG Chongyang, XIE Zuojian, LIU Zehua, JIN Yaolan, MENG Shaokang. Analysis and Suppression for Self-excited Vibration of Aircraft Hydraulic Braking System [J]. Journal of Mechanical Engineering, 2024, 60(16): 200-208. |
[13] | JIANG Linlin, YU Tian, LI Yao, JIAO Zongxia, SHANG Yaoxing. Research on Accurate Friction Characteristics Test Method of Composite Servo Hydraulic Cylinder [J]. Journal of Mechanical Engineering, 2024, 60(16): 338-347. |
[14] | KONG Lingxing, WEI Wei, YAN Qingdong, CHEN Xuemei, HUANG Yan. Joint Simulation of Coupled Flow in Hydrodynamic Retarders and Its Hydraulic Control System [J]. Journal of Mechanical Engineering, 2024, 60(12): 355-364. |
[15] | WANG Fuji, WANG Gongshuo, WANG Hongquan, FU Rao, WU Bo, WANG Qi. Short-continuous Carbon Fiber Synchronous Reinforced Thermoplastic Composites: An Analysis on the Manufacturing and 3D Printing Process of Its Prepreg Filament [J]. Journal of Mechanical Engineering, 2024, 60(11): 283-295. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||