Journal of Mechanical Engineering ›› 2021, Vol. 57 ›› Issue (21): 248-268.doi: 10.3901/JME.2021.21.248
Previous Articles Next Articles
LIU Qiang1,2,3, ZHANG Haijun1,2, LIU Xianli1,2, GAO Dayong1,2, ZHANG Mingjian1,2
Received:
2020-11-09
Revised:
2021-09-11
Online:
2021-11-05
Published:
2021-12-28
CLC Number:
LIU Qiang, ZHANG Haijun, LIU Xianli, GAO Dayong, ZHANG Mingjian. A Review of Research on Intelligent Cutting Tools[J]. Journal of Mechanical Engineering, 2021, 57(21): 248-268.
[1] 刘献礼, 刘强, 岳彩旭, 等. 切削过程中的智能技术[J]. 机械工程学报, 2018, 54(16):45-61. LIU Xianli, LIU Qiang, YUE Caixu, et al. Intelligent technology in the cutting process[J]. Journal of Mechanical Engineering, 2018, 54(16):45-61. [2] 刘战强, 黄传真. 切削温度测量方法综述[J]. 工具技术, 2002, 36(3):3-6. LIU Zhanqiang, HUANG Chuanzhen. Summary of cutting temperature measurement methods[J]. Tool technology, 2002, 36(3):3-6. [3] 于启勋, 朱正芳. 刀具材料的历史、进展与展望[J]. 机械工程学报, 2003, 39(12):62-66. YU Qixun, ZHU Zhengfang. The history、progress and prospect of tool materials[J]. Journal of Mechanical Engineering, 2003, 39(12):62-66. [4] 蔡飞, 高营, 蔡习军, 等. 硬质合金刀具高能离子源增强多弧镀AlCrTiSiN梯度涂层制备及性能研究[J]. 机械工程学报, 2019, 55(19):213-220. CAI Fei, GAO Ying, CAI Xijun, et al. Preparation and properties of multi-arc AlCrTiSiN gradient coating enhanced by high-energy ion source for cemented carbide tools[J]. Journal of Mechanical Engineering, 2019, 55(19):213-220. [5] 刘日韦, 唐健, 贺连梁, 等. 刀具角度对TC4钛合金切削力的影响[J]. 工具技术, 2014, 48(5):17-20. LIU Riwei, TANG Jian, HE Lianliang, et al. The influence of tool angle on cutting force of TC4 titanium alloy[J]. Tool Technology, 2014, 48(5):17-20. [6] 刘献礼, 范梦超, 计伟, 等. 椭球头铣刀设计及其刀具路径生成算法[J]. 机械工程学报, 2018, 54(15):199-212. LIU Xianli, FAN Mengchao, JI Wei, et al. Ellipsoid end milling cutter design and its tool path generation algorithm[J]. Journal of Mechanical Engineering, 2018, 54(15):199-212. [7] 李亚, 黄亦翔, 赵路杰, 等. 基于t分布邻域嵌入与XGBoost的刀具多工况磨损评估[J]. 机械工程学报, 2020, 56(01):132-140. LI Ya, HUANG Yixiang, ZHAO Lujie, et al. Multi-condition tool wear evaluation based on t-distribution neighborhood embedding and XGBoost[J]. Journal of Mechanical Engineering, 2020, 56(01):132-140. [8] 王国锋, 李志猛, 董毅. 刀具状态智能监测研究进展[J]. 航空制造技术, 2018, 61(6):16-23. WANG Guofeng, LI Zhimeng, DONG Yi. Recent advances in intelligent monitoring of cutting tool condition[J]. Aviation Manufacturing Technology, 2018, 61(6):16-23. [9] 刘志军, 全燕鸣. 刀具切削状态监控技术综述[J]. 工具技术, 2015, 49(6):3-7. LIU Zhijun, QUAN Yanming. Overview of tool cutting condition monitoring technology[J]. Tool Technology, 2015, 49(6):3-7. [10] 成云平. 刀具嵌入式薄膜微传感器切削力测量技术的基础研究[D]. 太原:中北大学, 2015. CHENG Yunping. Basic research of embedded thin film micro sensor on cutting force measurement technology[D]. Taiyuan:North China University, 2015. [11] 姚英学, 陈朔冬. 一种新结构多用途切削测力仪的研制[J]. 哈尔滨工业大学学报, 1994, 26(4):85-89. YAO Yingxue, CHEN Shuodong. Development of a multipurpose machine tool dynamometer with new structure[J]. Journal of Harbin University of Technology, 1994, 26(4):85-89 [12] 孟萌. 嵌入薄膜微传感器测量切削力刀具的设计及试验研究[D]. 太原:中北大学, 2018. MENG Meng. The design and experimental study of measuring cutting force tool with embedded thin film microsensor[D]. Taiyuan:North China University, 2018. [13] 刘玉香. 切削力测量系统传感器设计[D]. 沈阳:沈阳理工大学, 2012. LIU Yuxiang. The design of sensor on cutting force measurement system[D]. Shenyang:Shenyang Ligong University, 2012. [14] 张铁. 三向压电式车削测力仪的性能研究与结构设计[D]. 大连:大连理工大学, 2007. ZHANG Tie. Study and structure design on three-dimentional dynamometer of piezoelectricity on turning[D]. Dalian:Dalian University of Technology, 2007. [15] KIM I H. Dynamic cutting force on-line estimation using a 4-electrode cylindrical capacitive displacement sensor mounted on a high speed milling spindle[J]. Journal of Mechanical Science & Technology, 2008, 22(5):914-923. [16] 李文德. 基于声表面波原理的智能刀具系统关键技术研究[D]. 哈尔滨:哈尔滨工业大学, 2013. LI Wende. Research on the key technologies about smart cutting tool system based on surface acoustic wave techniques[D]. Harbin:Harbin Institute of Technology, 2013. [17] YALDZ S, ÜNSAAR F. A dynamometer design for measurement the cutting forces on turning[J]. Measurement, 2006, 39(1):80-89. [18] PANZERA T H, SOUZA P R. Development of a three-component dynamometer to measure turning force[J]. International Journal of Advanced Manufacturing Technology, 2012, 62(9-12):913-922. [19] ZHAO You, ZHAO Yulong, LIANG Songbo, et al. A high performance sensor for triaxial cutting force measurement in turning[J]. Sensors, 2015, 15(4):7969-7984. [20] 赵友, 葛晓慧, 赵玉龙. 高精度动态切削力自感知智能刀具的研究[J]. 机械工程学报, 2019, 55(21):178-185. ZHAO You, GE Xiaohui, ZHAO Yulong. Research on high-precision dynamic cutting force self-sensing intelligent tool[J]. Journal of Mechanical Engineering, 2019, 55(21):178-185. [21] HARMON A, FUSSELL B K, JERARD R B. Calibration and characterization of a low-cost wireless sensor for applications in CNC end milling[C]//ASME International Manufacturing Science & Engineering Conference Collocated with the North American Manufacturing Research Conference & in Participation with the International Conference on Tribology Materials & Processing, 2012:823-832. [22] RIZAL M, GHANI J A, NUAWI M Z, et al. Development and testing of an integrated rotating dynamometer on tool holder for milling process[J]. Mechanical Systems and Signal Processing, 2015, 52-53:559-576. [23] SUPROCK C A, NICHOLS J S. A low cost wireless high bandwidth transmitter for sensor-integrated metal cutting tools and process monitoring[J]. International Journal of Mechatronics and Manufacturing Systems, 2009, 2(4):441-454. [24] 徐佳成. 超声加工压电式三向测力仪的关键技术研究[D]. 杭州:杭州电子科技大学, 2018. XU Jiacheng. Research on key techniques of ultrasonic piezoelectric three-dimensional force gauge[D]. Hangzhou:Hangzhou University of Electronic Science and Technology, 2018. [25] 孙宝元, 张贻恭, 杨华敏. 压电式动态切削测力仪的研究(上)[J].机床, 1979(5):1-5. SUN Baoyuan, ZHANG Yigong, YANG Huamin. Piezoelectric dynamic cutting dynamometer (part 1)[J]. Machine Tool, 1979(5):1-5. [26] 孙宝元, 张贻恭, 张松涛.压电式动态切削测力仪的研究(下)[J].机床, 1979(10):27-33. SUN Baoyuan, ZHANG Yigong, ZHANG Songtao. Piezoelectric dynamic cutting dynamometer (part 2)[J]. Machine Tool, 1979(10):27-33. [27] 孙宝元, 张贻恭. 压电石英力传感器及动态切削测力仪[M]. 北京:计量出版社, 1985. SUN Baoyuan, ZHANG Yigong. Piezoelectric quartz force sensor and dynamic cutting dynamometer[M]. Beijing:Metrology Press, 1985. [28] 孙宝元. 三向压电式车削测力仪结构的优化设计[J]. 机械工程学报, 1990, 26(2):65-72. SUN Baoyuan. Optimal design of the structure of the three-way piezoelectric turning dynamometer[J]. Journal of Mechanical Engineering, 1990, 26(2):65-72. [29] 肖才伟. 基于切削力感知的智能切削刀具设计及其关键技术研究[D]. 哈尔滨:哈尔滨工业大学, 2014. XIAO Caiwei. Design and key technologies research of smart cutting tool based on cutting force sensing[D]. Harbin:Harbin Institute of Technology, 2014. [30] TOTIS G, SORTINO M. Development of a modular dynamometer for triaxial cutting force measurement in turning[J]. International Journal of Machine Tools and Manufacture, 2011, 51(1):34-42. [31] TOTIS G, WIRTZ G, SORTINO M, et al. Development of a dynamometer for measuring individual cutting-edge forces in face milling[J]. Mechanical Systems and Signal Processing, 2010, 24(6):1844-1857. [32] REN Zongjin, ZHANG Jun, JIA Zhenyuan, et al. Design and calibration of a cutting force dynamometer[J]. Advanced Materials Research, 2014, 945-949:2191-2194. [33] 尚永艳. 刀柄式压电切削测力仪研究[D]. 大连:大连理工大学, 2014. SHANG Yongyan. Research on tool holder piezoelectric cutting dynamometer[D]. Dalian:Dalian University of Technology, 2014. [34] ZHENG L, RAMALINGAM S, SHI T, et al. Aluminum nitride thin film sensor for force, acceleration, and acoustic emission sensing[J]. Journal of Vacuum Science & Technology A Vacuum Surfaces and Films, 1993, 11(5):2437-2446. [35] WANG Chao, RAWKOSKI R, CHENG Kai. Design and analysis of a piezoelectric film embedded smart cutting tool[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2013, 227(2):254-260. [36] CHENG Kai, NIU Zhichao, WANG R C, et al. Smart Cutting Tools and Smart Machining:Development Approaches, and Their Implementation and Application Perspectives[J]. Chinese Journal of Mechanical Engineering, 2017(5):1162-1176. [37] LUO Ming, LUO Huan, AXINTE D, et al. A wireless instrumented milling cutter system with embedded PVDF sensors[J]. Mechanical Systems and Signal Processing, 2018, 110:556-568. [38] MA L, MELKOTE S N, Castle J B. PVDF sensor-based monitoring of milling torque[J]. The International Journal of Advanced Manufacturing Technology, 2014, 70(9-12):1603-1614. [39] MA L, MELKOTE S N, Morehouse J B, et al. thin-film PVDF sensor-based monitoring of cutting forces in peripheral end milling[J]. Journal of Dynamic Systems, Measurement, and Control, 2012, 134(5):1-9. [40] 郝悦. 电容式四维测力刀柄性能测试技术研究[D]. 哈尔滨:哈尔滨工业大学, 2016. HAO Yue. Research on performance testing for capacitive four-dimensional force-measuring tool holder[D]. Harbin:Harbin Institute of Technology, 2016. [41] ALBRECHT A, PARK S S, ALTINTAS Y, et al. High frequency bandwidth cutting force measurement in milling using capacitance displacement sensors[J]. International Journal of Machine Tools and Manufacture, 2005, 45(9):993-1008. [42] KIM J H, CHANG H K, HAN D C, et al. Cutting force estimation by measuring spindle displacement in milling process[J]. CIRP Annals Manufacturing Technology, 2005, 54(1):67-70. [43] STONEY R, O'DONNELL G, EGERAGHTY D. Dynamic wireless passive strain measurement in CNC turning using surface acoustic wave sensors[J]. International Journal of Advanced Manufacturing Technology, 2013, 69(5-8):1421-1430. [44] STONEY R, DONOHOE B, GERAGHTY D, et al. The development of surface acoustic wave sensors (SAWs) for Process Monitoring[J]. Procedia CIRP, 2012, 1:569-574. [45] 李文德, 丁辉, 程凯. 基于声表面波原理的切削力测量智能刀具研究[J]. 机械制造与自动化, 2014(5):46-50. LI Wende, DING Hui, CHENG Kai. Research on force measuring smart cutting tool based on surface acoustic wave resonator principle[J]. Machinery Manufacturing and Automation, 2014(5):46-50. [46] WANG Chao, CHENG Kai, CHEN Xun, et al. Design of an instrumented smart cutting tool and its implementation and application perspectives[J]. Smart Materials and Structures, 2014, 23(3):623-626. [47] 王震宇. 高速立铣切削刀具温度场建模与实时在线温度测量技术研究[D]. 哈尔滨:哈尔滨理工大学, 2015. WANG Zhenyu. Study on the temperature field modeling and the real-time online temperature measuring technique for the high speed end mill[D]. Harbin:Harbin University of Technology, 2015. [48] 徐念伟, 付秀丽, 郝宗成, 等. 金属切削加工瞬态温度测量研究综述[J]. 工具技术, 2019, 53(2):5-9. XU Nianwei, FU Xiuli, HAO Zongcheng, et al. Summary of transient temperature measurement in metal cutting[J]. Tool Technology, 2019, 53(2):5-9. [49] SUGITA N, ISHII K, FURUSHO T, et al. Cutting temperature measurement by a micro-sensor array integrated on the rake face of a cutting tool[J]. CIRP Annals-Manufacturing Technology, 2015, 64(1):77-80. [50] 崔云先, 张博文, 丁万昱, 等. 瞬态切削用智能测温刀具的研究[J]. 机械工程学报, 2017(21):185-191. CUI Yunxian, ZHANG Bowen, DING Wanyu, et al. Research on the cutting tool with intelligent transient temperature measuring system[J]. Journal of Mechanical Engineering, 2017(21):185-191. [51] 李林文. 面向硬切削的切削区域温度场解析建模及实验研究[D]. 武汉:华中科技大学, 2013. LI Linwen. Analytical modeling and experimental study of temperature field in cutting area for hard cutting[D]. Wuhan:Huazhong University of Science and Technology, 2013. [52] SHUWEN H, BO T, JINDANG L, et al. Estimation of the time and space-dependent heat flux distribution at the tool-chip interface during turning using an inverse method and thin film thermocouples measurement[J]. International Journal of Advanced Manufacturing Technology, 2018, 99:1531-1543. [53] SHU Shengrong, DING Hui, CHEN Shijin, et al. FEM-based design and analysis of a smart cutting tool with internal cooling for cutting temperature measurement and control[J]. Applied Mechanics and Materials, 2012, 217-219:1874-1879. [54] COZ G L, MARINESCU M, DEVILLEZ A, et al. Measuring temperature of rotating cutting tools:Application to MQL drilling and dry milling of aerospace alloys[J]. Applied Thermal Engineering, 2012, 36:434-441. [55] WRIGHT P K, DORNFELD D A, HILLAIRE R G, et al. A wireless sensor for tool temperature measurement and its integration within a manufacturing system[J]. Transactions of the North American Manufacturing Research Institute of SME, 2006, 34:63-70. [56] KERRIGAN K, O'DONNELL G E. Temperature measurement in CFRP milling using a wireless tool-integrated process monitoring sensor[J]. International Journal of Automation Technology, 2013, 7(6):742-750. [57] DEVILLEZ A, DUDZINSKI D. Tool vibration detection with eddy current sensors in machining process and computation of stability Lobes using fuzzy classifiers[J]. Mechanical Systems & Signal Processing, 2007, 21(1):441-456. [58] CHUNG T K, YEH P C, HAO L, et al. An attachable electromagnetic energy harvester driven wireless sensing system demonstrating milling-processes and cutter-wear/breakage-condition monitoring[J]. Sensors, 2016, 16(3):1-18. [59] CHUNG T, LEE H, TSENG C, et al. Self-powered wireless vibration-sensing system for machining monitoring[C]//Proceedings of SPIE-The International Society for Optical Engineering. San Diego, CA, United states:SPIE, 2013, 869286922U-1. [60] PENG Huanghu, WU Yijie, WANG Bin, et al. An improved two-point real-time measuring method for radial micro-displacement measurement on high-speed smart boring bar[J]. The International Journal of Advanced Manufacturing Technology, 2015, 81(5-8):925-933. [61] SUPROCK C A, FUSSELL B K, HASSAN R Z, et al. A low cost wireless tool tip vibration sensor for milling[C]//ASME International Manufacturing Science & Engineering Conference Collocated with the Jsme/asme International Conference on Materials & Processing. 2008. [62] 刘海军. 面向铣削过程的无线测振刀柄的关键技术研究[D]. 哈尔滨:哈尔滨工业大学, 2015. LIU Haijun. Research for key technology of vibration-detecting and wireless-transmitting tool holder in milling process[D]. Harbin:Harbin Institute of Technology, 2015. [63] GRANADOS G H, MORITA N, HIDAI H, et al. Development of a non-rigid micro-scale cutting mechanism applying a normal cutting force control system[J]. Precision Engineering, 2016, 43:544-553. [64] LI H, IBRAHIM R, CHENG K. Design and principles of an innovative compliant fast tool servo for precision engineering[J]. Mech. Sci, 2011, 2:139-146. [65] CHENG Kai, NIU Zhichao, WANG R C, et al. Smart cutting tools and smart machining:Development approaches, and their implementation and application perspectives[J]. Chinese Journal of Mechanical Engineering, 2017, 30:1162-1176. [66] KURIYAMA K, FUKUTA M, SEKIYA K, et al. Applying constant pressure unit to ductile mode cutting of hard and brittle materials[J]. International Journal of Automation Technology, 2013, 7(3):278-284. [67] 舒盛荣. 内冷式智能车刀设计与分析及其实验研究[D]. 哈尔滨:哈尔滨工业大学, 2014. SHU Shengrong. The design and analysis of the internally cooled intelligent turning tool and its experimental research[D]. Harbin:Harbin Institute of Technology, 2014. [68] 刘文博, 李天箭, 石永泉, 等. 基于LabVIEW的内冷式智能车刀温度控制系统的设计[J]. 农业装备与车辆工程, 2018, 56(10):10-12. LIU Wenbo, LI Tianjian, SHI Yongquan, et al. The design of the temperature control system of the inner-cooled intelligent turning tool based on LabVIEW[J]. Agricultural Equipment and Vehicle Engineering, 2018, 56(10):10-12. [69] SUN X, BATEMAN R, CHENG K, et al. Design and analysis of an internally cooled smart cutting tool for dry cutting[J]. Proceedings of the Institution of Mechanical Engineers Part B Journal of Engineering Manufacture, 2011, 226(4):585-591. [70] 梁良. 面向绿色切削的热管刀具散热性能研究[D]. 广州:华南理工大学, 2011. LIANG Liang. Research on heat dissipation performance of heat pipe cutters for green cutting[D]. Guangzhou:South China University of Technology, 2011. [71] LIANG Liang, QUAN Yanming. Investigation of heat partition in dry turning assisted by heat pipe cooling[J]. International Journal of Advanced Manufacturing Technology, 2013, 66(9-12):1931-1941. [72] LU Xiaodong, CHEN Fan, ALTINTAS Y. Magnetic actuator for active damping of boring bars[J]. CIRP Annals-Manufacturing Technology, 2014, 63(1):369-372. [73] CHEN Fan, LU Xiaodong, ALTINTAS Y. A novel magnetic actuator design for active damping of machining tools[J]. International Journal of Machine Tools and Manufacture, 2014, 85:58-69. [74] CHEN Fan, LIU Guangya. Active damping of machine tool vibrations and cutting force measurement with a magnetic actuator[J]. International Journal of Advanced Manufacturing Technology, 2017, 89(1-4):691-700. [75] CHEN Fan, HANIFZADEGAN M, ALTINTAS Y, et al. Active damping of boring bar vibration with a magnetic actuator[J]. IEEE/ASME Transactions on Mechatronics, 2015:1-12. [76] LIU Xianli, LIU Qiang, WU Shi, et al. Research on the performance of damping boring bar with a variable stiffness dynamic vibration absorber[J]. International Journal of Advanced Manufacturing Technology, 2017, 89(9-12):2893-2906. [77] MATSUBARA A, MAEDA M, YAMAJI I. Vibration suppression of boring bar by piezoelectric actuators and LR circuit[J]. CIRP Annals-Manufacturing Technology, 2014, 63(1):373-376. [78] 王民, 费仁元. 切削系统可变刚度结构及其颤振控制方法的研究[J]. 机械工程学报, 2002, 38(增):219-222. WANG Min, FEI Renyuan. Research of variable-stiffness structure and varying stiffness method on chatter control[J]. Journal of Mechanical Engineering, 2002, 38(Suppl.):219-222. [79] 王民, 费仁元. 基于电流变材料的切削颤振在线监控技术研究[J]. 机械工程学报, 2002, 38(12):93-97. WANG Min, FEI Renyuan. Research on monitored control of machining chatterbased on electrorheological fluids[J]. Journal of Mechanical Engineering, 2002, 38(12):93-97. [80] MEI Deqing, YAO Zhehe, KONG Tianrong, et al. Parameter optimization of time-varying stiffness method for chatter suppression based on magnetorheological fluid-controlled boring bar[J]. International Journal of Advanced Manufacturing Technology, 2010, 46(9-12):1071-1083. [81] YAO Zhehe, MEI Deqing, CHEN Zichen. Chatter suppression by parametric excitation:Model and experiments[J]. Journal of Sound & Vibration, 2011, 330(13):2995-3005. [82] 孔天荣. 磁流变自抑振智能镗杆的理论与方法研究[D]. 杭州:浙江大学, 2009. KONG Tianrong. Research on theory and method of magnetorheological self damping intelligent boring bar[D]. Hangzhou:Zhejiang University, 2009. [83] 孔天荣, 梅德庆, 陈子辰. 磁流变智能镗杆的动态特性测试与分析[J]. 浙江大学学报, 2009, 43(12):2314-2318. KONG Tianrong, MEI Deqing, CHEN Zichen. Dynamic characteristics test and analysis of magnetorheological intelligent boring bar[J]. Journal of Zhejiang University, 2009, 43(12):2314-2318. [84] 孔天荣, 梅德庆, 陈子辰. 磁流变智能镗杆的切削颤振抑制机理研究[J]. 浙江大学学报, 2008, 42(6):1005-1009. KONG Tianrong, MEI Deqing, CHEN Zichen. Research on mechanism of cutting chatter suppression based onmagnetorheological intelligent boring bar[J]. Journal of Zhejiang University, 2008, 42(6):1005-1009. [85] 李欣. 基于HMM-SVM的磁流变自抑振智能镗杆颤振在线预报理论和方法研究[D]. 杭州:浙江大学, 2013. LI Xin. Research on theory and method of online prediction of intelligent boring bar chatter based on hmm-svm[D]. Hangzhou:Zhejiang University, 2013. [86] 李欣, 梅德庆, 陈子辰. 基于经验模态分解和希尔伯特-黄变换的精密孔镗削颤振特征提取[J]. 光学精密工程, 2011, 19(6):1291-1297. LI Xin, MEI Deqing, CHEN Zichen. Chatter feature extraction of precision hole boring based on empirical mode decomposition and Hilbert-Huang transform[J]. Optical Precision Engineering, 2011, 19(6):1291-1297. [87] MONNIN J, KUSTER F, WEGENER K, et al. Optimal control for chatter mitigation in milling-Part 1:Modeling and control design[J]. Control Engineering Practice, 2014, 24:156-166. |
[1] | FENG Yong, ZHOU Haojie, ZHOU Zhiyuan, JIA Xiaolin, QIN Yuyan, XU Weiwei. Research on Cutting Force Model of Low-frequency Torsional Vibration Assisted Helical Milling [J]. Journal of Mechanical Engineering, 2024, 60(5): 390-402. |
[2] | HE Chunlei, WANG Shuqi, LI Dongyang, GENG Kun, CHEN Guang, REN Chengzu. Research Progress on the Influence of Crystalline Grain in Ultra-precision Cutting of Polycrystalline Material [J]. Journal of Mechanical Engineering, 2024, 60(3): 373-392. |
[3] | WANG Xiangyu, QIU Wenhao, NIU Jintao, LIU Guoliang, FU Xiuli, GUO Peiquan, QIAO Yang. Simulation and Experimental Study on Temperature in Cryogenic Cutting of Titanium Aluminum Alloy [J]. Journal of Mechanical Engineering, 2024, 60(19): 318-331. |
[4] | DU Yuchao, LIANG Zhiqiang, WANG Fei, LI Juan, LIU Yuehong, ZHAO Xu, SU Zhipeng, MA Yue, CHEN Rui, WANG Xibin. Research on Cutting Force Modeling and Cutting Performance of PCD Micro Milling-grinding Combined Machining Tool [J]. Journal of Mechanical Engineering, 2024, 60(19): 298-309. |
[5] | HUANG Jingshan, LIU Guoliang, SUN Hao, YAO Bin, JIN Lin, CHEN Binqiang, CAO Xincheng, WANG Shancheng, XU Hao, CAI Zhiqin. Effect of C60 Nanoparticle Cutting Fluid on Cutting Characteristics of 15Cr14Co12Mo5Ni2WA Gear Steel [J]. Journal of Mechanical Engineering, 2023, 59(23): 358-371. |
[6] | YIN Zengbin, HAO Xiaohua, CHEN Weiyou, ZHENG Yitong. Study on a New Type of Cutting Temperature Sensing Smart Tool [J]. Journal of Mechanical Engineering, 2023, 59(1): 242-248. |
[7] | ZHANG Yang, WU Baohai, XIA Weihong, ZHANG Ying, ZHAO Jing. Multi-objective Feed Optimization with Constant Cutting Force Constraints under Variable Cutting Depth [J]. Journal of Mechanical Engineering, 2021, 57(5): 242-250. |
[8] | CHEN Yun, HOU Liang, LIU Wenzhi, BU Xiangjian. Chatter Stability Prediction in Low Immersion Milling Based on Time-domain Simulation [J]. Journal of Mechanical Engineering, 2021, 57(3): 98-106. |
[9] | FENG Yong, WANG Xiaoyu, XU Zhenqin, JI Fuhua, WANG Haoxiang. Research on Cutting Force Model of Diamond Wire Saw with Single Crystal Silicon Swing [J]. Journal of Mechanical Engineering, 2021, 57(19): 260-272. |
[10] | NI Chenbing, ZHU Lida, NING Jinsheng, YANG Zhichao, LIU Changfu. Research on the Characteristics of Cutting Force Signal and Chip in Ultrasonic Vibration-assisted Milling of Titanium Alloys [J]. Journal of Mechanical Engineering, 2019, 55(7): 207-216. |
[11] | ZHAO You, GE Xiaohui, ZHAO Yulong. Research on High Precision Dynamic Cutting Force Self-perception Intelligent Tool [J]. Journal of Mechanical Engineering, 2019, 55(21): 178-185. |
[12] | WANG Fuji, YIN Junwei, JIA Zhenyuan, MA Jianwei, XU Zhenyu, WANG Dong. Measurement and Analysis of Cutting Force, Temperature and Cutting-induced Top-layer Damage in Edge Trimming of CFRPs [J]. Journal of Mechanical Engineering, 2018, 54(3): 186-195. |
[13] | CUI Yunxian, ZHANG Bowen, DING Wanyu, YAN Changgang, LIU Yi. Research on the Cutting Tool with Intelligent Transient Temperature Measuring System [J]. Journal of Mechanical Engineering, 2017, 53(21): 174-180. |
[14] | WANG Yidan, WANG Xuanping, KANG Renke, SUN Jiansong, JIA Zhenyuan, DONG Zhigang. Analysis of Influence on Ultrasonic-assisted Cutting Force of Nomex Honeycomb Core Material with Straight Knife [J]. Journal of Mechanical Engineering, 2017, 53(19): 73-82. |
[15] | SUN Jiansong, DONG Zhigang, WANG Yidan, LIU Jinting, QIN Yan, KANG Renke. Experimental Study on Ultrasonic Cutting of Aluminum Honeycombs [J]. Journal of Mechanical Engineering, 2017, 53(19): 128-135. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||