[1] 陈荧, 张志, 白志青, 等. 纺织基摩擦纳米发电机收集人体运动能量的研究[J]. 纺织科学与工程学报, 2019, 36(2):113-120. CHEN Ying, ZHANG Zhi, BAI Zhiqing, et al. Weft-knitted marine yarn fabric and its one-bath dyeing and multi-color production practice[J]. Journal of Textile Science and Engineering, 2019, 36(2):113-120. [2] MAHIDUR R S, SABARIAH J, MOHD F M S, et al. Review of piezoelectric energy harvesting system and application of optimization techniques to enhance the performance of the harvesting system[J]. Sensors and Actuators:A Physical, 2019, 300:111634. [3] CARNEIRO P, SANTO M P, RODRIGUES A, et al. Electromagnetic energy harvesting using magnetic levitation architectures:A review[J]. Applied Energy, 2020, 260:114191. [4] LI C C, JIANG F X, LIU C C, et al. Present and future thermoelectric materials toward wearable energy harvesting[J]. Applied Materials Today, 2019, 15:543-557. [5] 张弛, 付贤鹏, 王中林. 摩擦纳米发电机在自驱动微系统研究中的现状与展望[J]. 机械工程学报, 2019, 55(7):89-101. ZHANG Chi, FU Xianpeng, WANG Zhonglin. Review and prospect of triboelectric nanogenerators in self-powered microsystems[J]. Journal of Mechanical Engineering, 2019, 55(7):89-101. [6] ZHAO L M, ZHENG Q, OUYANG H, et al. A size-unlimited surface microstructure modification method for achieving high performance triboelectric nanogenerator[J]. Nano Energy, 2016, 28(28):172-178. [7] LIN Z H, XIE Y N, YANG Y, et al. Enhanced triboelectric nanogenerators and triboelectric nanosensor using chemically modified TiO2 nanomaterials[J]. ACS Nano, 2013, 7(5):4554-4560. [8] XIA X N, LIU G L, GUO H Y, et al. Honeycomb-like three electrodes based triboelectric generator for harvesting energy in full space and as a self-powered vibration alertor[J]. Nano Energy, 2015, 15:766-775. [9] WANG C F, PAN C F, WANG Z L. Electronic skin for closed-loop systems[J]. ACS Nano, 2019, 13(11):12287-12293. [10] WANG S H, XIE Y N, WANG Z L, et al. Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes[J]. Advanced Materials, 2014, 26(18):2818-2824. [11] 杨潍旭, 王晓力, 陈平. 摩擦纳米发电机表面织构的优化设计[J]. 机械工程学报, 2020, 56(3):130-136. YANG Weixu, WANG Xiaoli, CHEN Ping. Optimal design of surface texture in triboelectric nanogenerators[J]. Journal of Mechanical Engineering, 2020, 56(3):130-136. [12] 温涛. 摩擦-电磁-压电复合式能量采集器的设计研究[D]. 太原:中北大学, 2018. WEN Tao. Triboelectric-electromagnetic-piezoelectric hybrid generator for high-efficient vibration energy harvesting[D]. Taiyuan:North University of China, 2018. [13] KIM H, YIM E, KIM J, et al. Bacterial nano-cellulose triboelectric nanogenerator[J]. Nano Energy, 2017, 33(Complete):130-137. [14] UDDIN A S, CHUNG G. A self-powered active hydrogen sensor based on a high-performance triboelectric nanogenerator using a wrinkle-micropatterned PDMS film[J]. RSC Advances, 2016, 6(67):63030-63036. [15] DAGDEVIREN C, LI Z, WANG Z L. Energy harvesting from the animal/human body for self-powered electronics[J]. Annual review of biomedical engineering, 2017, 19(1):85-108. [16] CHEN J, GUO H Y, HE X M, et al. Enhancing performance of triboelectric nanogenerator by filling high dielectric nanoparticles into sponge PDMS film[J]. ACS Applied Materials, 2016, 8(1):736-744. [17] XIA X N, CHEN J, GUO H Y, et al. Embedding variable micro-capacitors in polydimethylsiloxane for enhancing output power of triboelectric nanogenerator[J]. Nano Research, 2017, 10(1):320-330. [18] 夏晓娜. TENG结构设计和表面电荷最大化机理研究[D]. 重庆:重庆大学, 2017. XIA Xiaona. TENG structure design and mechanism of maximizing surface charges[D]. Chongqing:Chongqing University, 2018. |