[1] 丁叁叁,姚拴宝,陈大伟. 高速磁浮列车气动升力特性[J]. 机械工程学报,2020,56(8):228-234.DING Sansan,YAO Shuanbao,CHEN Dawei. Aerodynamic lift force of high-speed maglev train[J]. Journal of Mechanical Engineering,2020,56(8):228-234. [2] KWON S D,LEE J S,MOON J W,et al. Dynamic interaction analysis of urban transit maglev vehicle and guideway suspension bridge subjected to gusty wind[J]. Engineering Structures,2008,30(12):3445-3456. [3] YAU J D. Aerodynamic vibrations of a maglev vehicle running on flexible guideways under oncoming wind actions[J]. Journal of Sound and Vibration,2010,329(10):1743-1759. [4] 武建军,史筱红. 横向风场作用下磁悬浮车体运动稳定性数值研究[J]. 兰州大学学报,2009,45(2):96-102.WU Jianjun,SHI Xiaohong. Numerical analyses of dynamic stability of maglev vehicles in crosswind field[J]. Journal of Lanzhou University,2009,45(2):96-102. [5] 刘堂红,田红旗. 磁浮列车明线交会横向振动分析[J]. 交通运输工程学报,2005,5(1):39-44. LIU Tanghong,TIAN Hongqi. Transverse vibration analysis of two maglev trains passing by in open air[J]. Journal of Traffic and Transportation Engineering,2005,5(1):39-44. [6] TAKIZAWA H. 磁悬浮列车交会通过时的车辆动力学特性[J]. 国外铁道车辆,2004,41(1):30-33.TAKIZAWA H. The vehicle dynamics characteristics of a magnetic levitation train passing another train running in opposite direction[J]. Foreign Rolling Stock,2004,41(1):30-33. [7] 翟婉明,赵春发. 磁浮车辆/轨道系统动力学(I)——磁/轨相互作用及稳定性[J]. 机械工程学报,2005,41(7):1-10.ZHAI Wanming,ZHAO Chunfa. Dynamics of maglev vehicle/guideway systems(I)——Magnet/Rail interaction and system stability[J]. Journal of Mechanical Engineering,2005,41(7):1-10. [8] 赵春发,翟婉明. 磁浮车辆/轨道系统动力学(II)——建模与仿真[J]. 机械工程学报,2005,41(8):163-175.ZHAO Chunfa,ZHAI Wanming. Dynamics of maglev vehicle/guideway systems(II)——Modeling and simulation[J]. Journal of Mecharical Engineering,2005,41(8):163-175. [9] LAU S L,CHEUNG Y K. Amplitude incremental variational principle for nonlinear vibration of elastic systems[J]. Journal of Applied Mechanics,1981,48:959-964. [10] LIU Yubiao,XING Yunlin,LAW S S,et al. Internal resonance vibration induced by nonlinearity of primary suspension system in high-speed vehicle system[J]. Nonlinear Dynamics,2017,88(4):2947-2956. [11] WANG Sheng,HUA Lin,YANG Can,et al. Applications of incremental harmonic balance method combined with equivalent piecewise linearization on vibrations of nonlinear stiffness systems[J]. Journal of Sound and Vibration,2018,441:111-125. [12] SHEN Yongjun,WEN Shaofang,LI Xianghong,et al. Dynamical analysis of fractional-order nonlinear oscillator by incremental harmonic balance method[J]. Nonlinear Dynamics,2016,85(3):1457-1467. [13] HUANG J L,ZHU W D. A new incremental harmonic balance method with two time scales for quasi-periodic motions of an axially moving beam with internal resonance under single-tone external excitation[J]. Journal of Vibration and Acoustics. 2017,139:021010. [14] LI Yuanping,CHEN Siyu. Periodic solution and bifurcation of a suspension vibration system by incremental harmonic balance and continuation method[J]. Nonlinear Dynamics,2016,83:941-950. [15] LU Chungjen,LIN Yumin. A modified incremental harmonic balance method for rotary periodic motions[J]. Nonlinear Dynamics,2011,66:781-788. [16] JU R,FAN W,ZHU W D,et al. A modified two-timescale incremental harmonic balance method for steady-state quasi-periodic responses of nonlinear systems[J]. Journal of Computational Nonlinear Dynamics,2017,12(5):051007. [17] CHEUNG Y K,CHEN S H,LAU S L. Application of the incremental harmonic balance method to cubic nonlinearity systems[J]. Journal of Sound and Vibration,1990,140:73-86. [18] ZHOU Peng,LI Tian,ZHAO Chunfa,et al. Numerical study on the flow field characteristics of the new high-speed maglev train in open air[J]. Journal of Zhejiang University-SCI ENCE A,2020,21(5):366-381. |