Journal of Mechanical Engineering ›› 2021, Vol. 57 ›› Issue (13): 83-101.doi: 10.3901/JME.2021.13.083
Previous Articles Next Articles
YAO Zhixiao1, CHAO Chaoyue1, GUO Haoyu1, ZHANG Tao1, XU Kun2, DING Xilun2, ZHAO Zeng3, PANG Yong3, DENG Jianfeng4, GUAN Yisheng1
Received:
2020-06-18
Revised:
2020-12-25
Online:
2021-07-05
Published:
2021-08-31
CLC Number:
YAO Zhixiao, CHAO Chaoyue, GUO Haoyu, ZHANG Tao, XU Kun, DING Xilun, ZHAO Zeng, PANG Yong, DENG Jianfeng, GUAN Yisheng. Progress and Perspective of Martian Regolith-sampling Technology[J]. Journal of Mechanical Engineering, 2021, 57(13): 83-101.
[1] ZHANG Tao, XU Kun, YAO Zhixiao, et al. The progress of extraterrestrial regolith-sampling robots[J]. Nature Astronomy, 2019, 3(6):487-497. [2] REITER J W, GUERRERO J L, WU D, et al. Advanced planetary drill technology and applications to future space missions[C]//Space Resources Roundtable VII:LEAG Conference on Lunar Exploration. League City, Texas, USA:LPI, 2005:75. [3] NASA. Bright chunks at Phoenix Lander's Mars site must have been ice[EB/OL]. (June 19, 2008). https://www.nasa.gov/mission_pages/phoenix/news/phoenix-20080619.html. [4] NASA. NASA Phoenix Mars Lander confirms frozen water[EB/OL]. (June 20, 2008). https://www.nasa.gov/mission_pages/phoenix/news/phoenix-20080620.html. [5] Los Angeles Times. It's true:There is water on Mars[EB/OL]. (August 1, 2008). https://www.latimes.com/archives/la-xpm-2008-aug-01-sci-phoenix1-story.html. [6] LESHIN L A, MAHAFFY P R, WEBSTER C R, et al. Volatile, isotope, and organic analysis of martian fines with the Mars Curiosity rover[J]. Science, 2013, 341(6153):1238937. [7] VENDIOLA V, ZACNY K, MORRISON P, et al. Testing of the planetary volatiles extractor (PVEx)[C]//16th Biennial International Conference on Engineering, Science, Construction, and Operations in Challenging Environments. Reston, VA:American Society of Civil Engineers, 2018:467-480. [8] 欧阳自远, 邹永廖. 火星科学概论[M]. 上海:上海科技教育出版社, 2017.OUYANG Ziyuan, ZOU Yongliao. Introduction to Mars science[M]. Shanghai:Science and Technology Education Press of Shanghai, 2017. [9] 侯建文, 阳光, 周杰, 等. 深空探测——火星探测[M]. 北京:国防工业出版社, 2016. HOU Jianwen, YANG Guang, ZHOU Jie, et al. Deepspace exploration-Mars exploration[M]. Beijing:National Defense Industry Press, 2016. [10] 李京霖, 丁希仑, 张文明, 等. 一种多功能小行星采样器的设计[J]. 机械工程学报, 2015, 51(13):167-175. LI Jinglin, DING Xilun, ZHANG Wenming, et al. Design of a multi-function minor planet soil sampler[J]. Journal of Mechanical Engineering, 2015, 51(13):167-175. [11] HOLMBERG N A, FAUST R P, HOLT H M. Viking'75 spacecraft design and test summary. Volume 1:Lander design[M]. National Aeronautics and Space Administration, Scientific and Technical Information Branch, 1980. [12] SAGDEEV R Z, ZAKHAROV A V. Brief history of the Phobos mission[J]. Nature, 1989, 341(6243):581. [13] RICHTER L, COSTE P, GROMOV V V, et al. Development and testing of subsurface sampling devices for the Beagle 2 lander[J]. Planetary and Space Science, 2002, 50(9):903-913. [14] PINNA S, ANGRILLI F, KOCHAN H, et al. Development of the mobile penetrometer (Mole) as sampling tool for the Beagle2 Lander on Mars Express 2003[J]. Advances in Space Research:The Official Journal of the Committee on Space Research(COSPAR), 2001, 28(8):1231-1236. [15] RICHTER L, COSTE P, GROMOV V, et al. The mole with sampling mechanism (MSM) -Technology development and payload of beagle 2 mars lander[C]//Proceedings, 8th ESA Workshop on Advanced Space Technologies for Robotics and Automation (ASTRA 2004). Noordwijk, the Netherlands:ESA, 2004:2-4. [16] GROMOV V V, MISCKEVICH A V, YUDKIN E N, et al. The mobile penetrometer, a "mole" for sub-surface soil investigation[C]//7th European Space Mechanisms and Tribology Symposium. Noordwijk, the Netherlands:ESTEC, 1997:151-156. [17] KOCHAN H, HAMACHER H, RICHTER L, et al. The mobile penetrometer (Mole):A tool for planetary sub-surface investigations[C]//Proceedings of the International Workshop on Penetrometry in the Solar System. Graz, Austria:Austrian Academy of Science, 1999:213-242. [18] GOREVAN S P, MYRICK T, DAVIS K, et al. Rock abrasion tool:Mars exploration rover mission[J]. Journal of Geophysical Research:Planets, 2003, 108(E12):8068. [19] MYRICK T, DAVIS K, WILSON J. Rock abrasion tool[C]//Proceedings of the 37th Aerospace Mechanisms Symposium. Galveston, TX, USA:NASA, 2004:277-290. [20] CHU P, WILSON J, DAVIS K, et al. Icy soil acquisition device for the 2007 phoenix mars lander[C]//Proceedings of the 39th Aerospace Mechanisms Symposium. Huntsville, AL, USA:NASA Marshall Space Flight Center, 2008:289-302. [21] BONITZ R, SHIRAISHI L, ROBINSON M, et al. The phoenix mars lander robotic arm[C]//2009 IEEE Aerospace Conference. Big Sky, Montana, USA:IEEE, 2009:1-12. [22] ZACNY K, DAVIS K, PAULSEN G, et al. Drills, scoops, grinders, brushing tools, crushers, and sample manipulation systems enabling Mars exploration[C]//37th COSPAR Scientific Assembly. Montréal, Canada:COSP, 2008:3581. [23] SMITH P H, TAMPPARI L K, ARVIDSON R E, et al. H2O at the Phoenix landing site[J]. Science, 2009, 325(5936):58-61. [24] SMITH p h. The phoenix mission to mars[C]//2004 IEEE Aerospace Conference Proceedings (IEEE Cat No 04TH8720). Big Sky, Montana, USA:IEEE, 2004:1. [25] MELLON M T, BOYNTON W V, FELDMAN W C, et al. A prelanding assessment of the ice table depth and ground ice characteristics in Martian permafrost at the Phoenix landing site[J]. Journal of Geophysical Research:Planets, 2008, 113(E3):E00A25. [26] BONITZ R G, SHIRAISHI L, ROBINSON M, et al. NASA Mars 2007 Phoenix lander robotic arm and icy soil acquisition device[J]. Journal of Geophysical Research:Planets, 2008, 113(E3):E00A01. [27] ARVIDSON A, ADAMS D, BONFIGLIO G, et al. Mars Exploration Program 2007 Phoenix landing site selection and characteristics[J]. Journal of Geophysical Research:Planets, 2008, 113(E3):E00A03. [28] HECHT M H, KOUNAVES S P, QUINN R C, et al. Detection of perchlorate and the soluble chemistry of martian soil at the Phoenix lander site[J]. Science, 2009, 325(5936):64-67. [29] YUNG K, LAM C W, KO S M, et al. The Phobos-Grunt microgravity soil preparation system[J]. Acta Astronautica, 2017, 141:22-29. [30] MAROV M Y, AVDUEVSKY V S, AKIM E L, et al. Phobos-Grunt:Russian sample return mission[J]. Advances in Space Research, 2004, 33(12):2276-2280. [31] ANDERSON R C, JANDURA L, OKON A B, et al. Collecting samples in Gale Crater, Mars; an overview of the Mars Science Laboratory sample acquisition, sample processing and handling system[J]. Space Science Reviews, 2012, 170(1-4):57-75. [32] MING D W, ARCHER P D, GLAVIN D P, et al. Volatile and organic compositions of sedimentary rocks in Yellowknife Bay, Gale Crater, Mars[J]. Science, 2014, 343(6169):1245267. [33] MARTÍN-TORRES F J, ZORZANO M P, VALENTÍN-SERRANO P, et al. Transient liquid water and water activity at Gale crater on Mars[J]. Nature Geoscience, 2015, 8(5):357-361. [34] GROTZINGER J P, CRISP J, VASAVADA A R, et al. Mars Science Laboratory mission and science investigation[J]. Space Science Reviews, 2012, 170(1-4):5-56. [35] OKON A B. Mars science laboratory drill[C]//Proceedings of the 40th Aerospace Mechanisms Symposium. Merritt Island, FL, USA:NASA Kennedy Space Center, 2010:1-16. [36] SUNSHINE D. Mars science laboratory CHIMRA:A device for processing powdered Martian samples[C]//Proceedings of the 40th Aerospace Mechanisms Symposium. Merritt Island, FL, USA:NASA Kennedy Space Center, 2010:249-262. [37] JANDURA L. Mars science laboratory sample acquisition, sample processing and handling:Subsystem design and test challenges[C]//Proceedings of the 40th Aerospace Mechanisms Symposium. Merritt Island, FL, USA:NASA Kennedy Space Center, 2010:233-248. [38] ANDERSON R C, BEEGLE L W, HUROWITZ J A, et al. Results to date for the Mars Science Laboratory sample acquisition, sample processing and handling system (SA/SPaH)[C]//44th Lunar and Planetary Science Conference. Woodlands, Texas, USA:LPI, 2013:1728. [39] JANDURA L, BURKE K, KENNEDY B, et al. An overview of the Mars Science Laboratory sample acquisition, sample processing, and handling subsystem[C]//Earth and Space 2010:Engineering, Science, Construction, and Operations in Challenging Environments. Honolulu, Hawaii:ASCE, 2010:941-948. [40] JANDURA L, BURKE K, KENNEDY B, et al. Mars Science Laboratory sample acquisition, sample processing and handling subsystem:A description of the sampling functionality[C]//AGU Fall Meeting 2009. San Francisco, California:AGUFM, 2009:P43A-1420. [41] SPOHN T, GROTT M, SMREKAR S E, et al. The heat flow and physical properties package (HP 3) for the InSight mission[J]. Space Science Reviews, 2018, 214(5):96. [42] ANTTILA M, SUOMELA J, SAARINEN J. The micro ROSA2 activity-conclusion and future plans[C]//7th ESA Workshop on Advanced Space Technologies for Robotics and Automation (ASTRA 2002). Noordwijk, the Netherlands:ESA, 2002:1-8. [43] ISHIBASHI J. Direct access to the sub-vent biosphere by shallow drilling[J]. Oceanography, 2007, 20:24-25. [44] MAGNANI P G, RE E, YLIKORPI T, et al. Deep drill (DeeDri) for Mars application[J]. Planetary and Space Science, 2004, 52(1-3):79-82. [45] RE E, MAGNANI P G, YLIKORPI T, et al. ‘DeeDri’ drill tool prototype and drilling system development for Mars soil sampling applications[C]//7th ESA Workshop on Advanced Space Technologies for Robotics and Automation (ASTRA 2002). Noordwijk, the Netherlands:ESA, 2002:1-8. [46] HOU X Y, DING T X, CAO K R, et al. Research on multi-pipe drilling and pneumatic sampling technology for deep Martian soil[J]. Advances in Space Research, 2019, 64(1):211-222. [47] MCKAY C P, STOKER C R, GLASS B J, et al. The Icebreaker life mission to Mars:A search for biomolecular evidence for life[J]. Astrobiology, 2013, 13(4):334-353. [48] ZACNY K, PAULSEN G, MCKAY C P, et al. Reaching 1 m deep on Mars:The Icebreaker drill[J]. Astrobiology, 2013, 13(12):1166-1198. [49] GLASS B J, MCKAY C, THOMPSON S, et al. Automated Mars drilling for "Icebreaker"[C]//2011 Aerospace Conference. Big Sky, Montana:IEEE, 2011:1-7. [50] STOKER C R, LEMKE L G, CANNON H, et al. Field simulation of a drilling mission to mars to search for subsurface life[C]//36th Annual Lunar and Planetary Science Conference. League City, Texas:NASA, 2005:1537. [51] PAULSEN G L, MUMM E, KENNEDY T, et al. Development of autonomous drills for planetary exploration[C]//37th Annual Lunar and Planetary Science Conference. League City, Texas:NASA, 2006:2358. [52] PRIETO-BALLESTEROS O, MARTÍNEZ-FRÍAS J, SCHUTT J, et al. The subsurface geology of Río Tinto:material examined during a simulated Mars drilling mission for the Mars Astrobiology Research and Technology Experiment (MARTE)[J]. Astrobiology, 2008, 8(5):1013-1021. [53] STOKER C R, CANNON H N, DUNAGAN S E, et al. The 2005 MARTE robotic drilling experiment in Rio Tinto, Spain:objectives, approach, and results of a simulated mission to search for life in the Martian subsurface[J]. Astrobiology, 2008, 8(5):921-945. [54] CANNON H N, STOKER C R, DUNAGAN S E, et al. MARTE:Technology development and lessons learned from a Mars drilling mission simulation[J]. Journal of Field Robotics, 2007, 24(10):877-905. [55] GLASS B, CANNON H, HANAGUD S, et al. Drilling automation tests at a Lunar/Mars analog site[C]//37th Lunar and Planetary Science Conference. League City, TX:NASA, 2006:2300. [56] GLASS B, CANNON H, BRANSON M, et al. DAME:planetary-prototype drilling automation[J]. Astrobiology, 2008, 8(3):653-664. [57] GLASS B, CANNON H, HANAGUD S, et al. Drilling automation for subsurface planetary exploration[C]//8th International Symposium on Artifical Intelligence, Robotics and Automation in Space (i-SAIRAS 2005). Munich, Germany:ESA, 2005:242-246. [58] GLASS B J, CANNON H, STOKER C, et al. Robotic and human-tended collaborative drilling automation for subsurface exploration[C]//56th International Astronautical Congress of the International Astronautical Federation, the International Academy of Astronautics, and the International Institute of Space Law. Fukuoka, Japan:AIAA, 2005:A5.2.01. [59] ZACNY K, PAULSEN G, GLASS B. Field testing of planetary drill in the Arctic[C]//AIAA Space 2010 Conference & Exposition. Anaheim, California:AIAA, 2010:8701. [60] ZACNY K, BAR-COHEN Y, BRENNAN M, et al. Drilling systems for extraterrestrial subsurface exploration[J]. Astrobiology, 2008, 8(3):665-706. [61] BATTISTELLI E, FALCIANI P, MAGNANI P, et al. Galileo Avionica's technologies and instruments for planetary exploration[J]. Origins of Life and Evolution of Biospheres, 2006, 36(5-6):587-596. [62] BADESCU M, RESSA A, LEE H J, et al. Auto-Gopher:a wireline deep sampler driven by piezoelectric percussive actuator and EM rotary motor[C]//Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2013. International Society for Optics and Photonics. San Diego, California:SPIE, 2013, 8692:86922S. [63] BADESCU M, SHERRIT S, BAO X Q, et al. Auto-Gopher:A wireline rotary-hammer ultrasonic drill[C]//Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2011. International Society for Optics and Photonics. San Diego, California:SPIE, 2011, 7981:79813U. [64] BAR-COHEN Y, BADESCU M, LEE H J, et al. Auto-Gopher-a wireline deep sampler driven by piezoelectric percussive actuator and EM rotary motor[C]//Earth and Space 2014. St. Louis, Missouri:ASCE, 2014:218-225. [65] BAR-COHEN Y, BADESCU M, SHERRIT S, et al. Deep drilling and sampling via the wireline auto-gopher driven by piezoelectric percussive actuator and EM rotary motor[C]//Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2012. International Society for Optics and Photonics. San Diego, California:SPIE, 2012, 8345:83452A. [66] MIRCEA B, HYEONG J L, STEWART S, et al. Auto-Gopher-II:an autonomous wireline rotary-hammer ultrasonic drill[C]//Industrial and Commercial Applications of Smart Structures Technologies 2017. International Society for Optics and Photonics. Portland, Oregon:SPIE, 2017, 10166:101660K. [67] MIRCEA B, Bar-Cohen Y, STEWART S, et al. Auto-Gopher-II:a wireline rotary-hammer ultrasonic drill that operates autonomously[C]//Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2018. International Society for Optics and Photonics. Denver, Colorado:SPIE, 2018, 10598:105982W. [68] MIRCEA B, BAR-COHEN Y, STEWART S, et al. Auto-Gopher-II:an autonomous wireline rotary-hammer ultrasonic drill test results[C]//Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2019. International Society for Optics and Photonics. Denver, Colorado:SPIE, 2019, 10970:109700Z. [69] ZHANG Weiwei, LI Lifang, JIANG Shengyuan, et al. Inchworm drilling system for planetary subsurface exploration[J]. IEEE/ASME Transactions on Mechatronics, 2019, 25(2):837-847. [70] ZHANG Weiwei, JIANG Shengyuan, SHEN Yi, et al. Development of an inchworm-type drilling test-bed for planetary subsurface exploration and preliminary experiments[C]//2016 IEEE International Conference on Robotics and Biomimetics (ROBIO). Qingdao, China:IEEE, 2016:2187-2191. [71] TANG Dewei, ZHANG Weiwei, JIANG Shengyuan, et al. Development of an Inchworm Boring Robot (IBR) for planetary subsurface exploration[C]//2015 IEEE International Conference on Robotics and Biomimetics (ROBIO). Zhuhai, China:IEEE, 2015:2109-2114. [72] ZHANG Weiwei, JIANG Shengyuan, JI Jie, et al. A drilling tool design and in situ identification of planetary regolith mechanical parameters[J]. Advances in Space Research, 2018, 61(9):2444-2456. [73] ZACNY K. Drilling and caching architecture for the Mars2020 mission[C]//American Geophysical Union Fall Meeting 2013. San Francisco, California:AGUFM, 2013:P51G-1797. [74] ZACNY K, CHU P, DAVIS K, et al. Mars2020 sample acquisition and caching technologies and architectures[C]//2014 IEEE aerospace conference. Big Sky, Montana:IEEE, 2014:1-12. [75] MAGNANI P, RE E, FUMAGALLI A, et al. Testing of ExoMars EM drill tool in Mars analogous materials[C]//11th Symposium on Advanced Space Technologies in Robotics and Automation(ASTRA). Noordwijk, The Netherlands:ESA, 2011:1-8. [76] WINNENDAEL M V, BAGLIONI P, VAGO J. Development of the ESA ExoMars rover[C]//Proceedings of the 8th International Symposium on Artifical Intelligence, Robotics and Automation in Space-iSAIRAS. Munich:ESA, 2005:5-8. [77] BOST N, RAMBOZ C, LEBRETON N, et al. Testing the ability of the ExoMars 2018 payload to document geological context and potential habitability on Mars[J]. Planetary and Space Science, 2015, 108:87-97. [78] AMIRI S, SHARAF O, ALMHEIRI S, et al. Emirates Mars mission(EMM) 2020 overview[C]//AGU Fall Meeting 2017. New Orleans, Louisiana:AGUFM, 2017:P34B-08. [79] HAIDER S A, BHARDWAJ A, SHANMUGAM M, et al. Indian Mars and Venus missions:Science and exploration[C]//42nd COSPAR Scientific Assembly. Pasadena, California:COSP, 2018, 42:B4.1-10-18. [80] USUI T, KURAMOTO K, KAWAKATSU Y. Martian Moons eXploration(MMX):Japanese phobos sample return mission[C]//42nd COSPAR Scientific Assembly. Pasadena, California:COSP, 2018, 42:B4.2-7-18. [81] Japan Aerospace Exploration Agency. Preparing for the unexpected:A second way to sample a moon[EB/OL]. (October 25, 2017). http://mmx-news.isas.jaxa.jp/?p=380&lang=en. [82] HIROKI K, YASUTAKA S, KENT Y, et al. Subsurface sampling robot for time-limited asteroid exploration[C]//2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Las Vegas, NV:IEEE, 2020:1925-1932. [83] BAI Deen, ZHAO Zhijun, CAO Yubao, et al. Experimental investigation on drilling efficiency of a percussive ultrasonic drill[C]//2017 IEEE International Conference on Robotics and Biomimetics (ROBIO). Macau:IEEE, 2017:2111-2116. [84] GLASS B, WANG A, HUFFMAN S, et al. Testing of a Mars-prototype drill at an analog site[C]//Earth and Space 2014. St. Louis, Missouri:ASCE, 2014:210-217. |
[1] | SUN Shiyong, ZHU Dianli, LI Jiaqi, FAN Junling, YANG Rui, ZHAO Yanguang. Dynamic Detection Method of Fatigue Crack Growth Based on Image Comparison [J]. Journal of Mechanical Engineering, 2024, 60(18): 24-31. |
[2] | YUAN Ye, YANG Huaiguang, DING Liang, LAN Qingning, YANG Chaojie, GAO Haibo, DENG Zongquan. Experimental Study and Modeling Considering the Influence of Wheel Load for Planetary Exploration Rovers [J]. Journal of Mechanical Engineering, 2024, 60(14): 263-271. |
[3] | HAO Peng, YANG Hao, CHEN Faxin, ZENG Yaoxiang, WANG Mingjie, WANG Bo. A Precise Design Method for Structural Safety Factor Considering Load and Strength Uncertainty [J]. Journal of Mechanical Engineering, 2024, 60(13): 182-192. |
[4] | DUAN Xiaohang, ZHANG Weiwei, XUE Chenyang, JIANG Shengyuan, CHI Guanxin. Method for Predicting the Water Content of Lunar Regolith Based on Dielectric Properties [J]. Journal of Mechanical Engineering, 2024, 60(2): 313-322. |
[5] | ZHAO Lin, LIU Yuan, CAO Xibin, HOU Yaodong, ZHANG Junjie. Research on NNBoost-based Uncertain Natural Frequency of Composite Laminates for Satellite Structures [J]. Journal of Mechanical Engineering, 2023, 59(24): 242-250. |
[6] | MEI Xuesong, LI Kailin, ZHAO Wanqin, LIU Bin, SUN Zheng, DUAN Wenqiang, WANG Wenjun, CUI Jianlei, FAN Zhengjie. Overview of Laser Self Spatial Dimensional Processing Systems [J]. Journal of Mechanical Engineering, 2023, 59(19): 375-388. |
[7] | ZHANG Qiang, ZHANG Ke-mo, LIU Ji-kui, QU Qiang, JIANG Jun, LI Rui. Overview of Research and Development on Space Slip Rings [J]. Journal of Mechanical Engineering, 2022, 58(22): 334-348. |
[8] | JIANG Shengyuan, LIANG Jieneng, LAI Xiaoming, DENG Xiangjin, PANG Yong, ZHANG Weiwei, TANG Junyue, QUAN Qiquan, PENG Jing, ZHANG Gao, DENG Zongquan. Analysis on Drilling and Coring Process and Lunar Regolith Stratification State Interpretation in Chang’E-5 [J]. Journal of Mechanical Engineering, 2022, 58(10): 348-360. |
[9] | CENG Yong-shun, QI Xin, YAO Zhi-feng, WANG Jing-zhu, WANG Yi-wei, WANG Fu-jun. Experimental Investigation on Damping Characteristics of a Vibrating Hydrofoil in Low-Order Modes [J]. Journal of Mechanical Engineering, 2022, 58(5): 108-118. |
[10] | ZHANG Li, CHEN Jiangtao, XIONG Fenfen, REN Chengkun, LI Chao. Meta-Learning Based Multi-Fidelity Deep Neural Networks Metamodel Method [J]. Journal of Mechanical Engineering, 2022, 58(1): 190-200. |
[11] | LIAN Yunsong, XIE Chaoping, ZHOU Wei, CHU Xuyang, ZHAO Guolong. Performance Research on Bionic Tools Based on Surface Microstructures of Blood Clams in Dry Cutting of GH4169 [J]. Journal of Mechanical Engineering, 2021, 57(13): 242-251. |
[12] | ZHAO Feifei, CAO Kaituo, BAO Hong, GAO Guoming. Deformation Field Reconstruction of Timoshenko Beam and Optimization of Sensor Placement [J]. Journal of Mechanical Engineering, 2020, 56(20): 1-11. |
[13] | LIU Ruijing, JIN Guang, GUO Jinsheng, LI Yewen, LI Zongxuan. Analysis and Test of Line-of-sight Error of Large-aperture Long Focal Length Optical Imaging System under Reaction wheel Disturbance [J]. Journal of Mechanical Engineering, 2020, 56(11): 151-160. |
[14] | WEI Jianzheng, ZHANG Pengfei, MA Ruiqiang, CHEN Xueyan, TAN Huifeng. Design and Dynamics of Large-scale Solar Arrays with Inflatable Mast [J]. Journal of Mechanical Engineering, 2020, 56(5): 93-99. |
[15] | SHI Zhaoyin, Lü Zhenzhou, LI Luyi, WANG Yanping. An Efficient ASVR-MCS Method For Estimating Failure Probability [J]. Journal of Mechanical Engineering, 2019, 55(24): 260-268. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||