Journal of Mechanical Engineering ›› 2021, Vol. 57 ›› Issue (5): 1-18.doi: 10.3901/JME.2021.05.001
YAO Yufeng1,2, YANG Yunlong1, GUO Junlong1, PEI Shuo1, SUN Lining1,2
Received:
2020-03-02
Revised:
2020-08-24
Online:
2021-03-05
Published:
2021-04-28
CLC Number:
YAO Yufeng, YANG Yunlong, GUO Junlong, PEI Shuo, SUN Lining. Review of Research on Knee-postoperative Rehabilitation Training Robot[J]. Journal of Mechanical Engineering, 2021, 57(5): 1-18.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] PRESTON J S,KBATEMAN D,TRIA JR A J. Constraint in revision total knee arthroplasty[J]. Mastering Orthopedic Techniques Revison Knee Arthoplasty,2019,1(3):1-7. [2] OECD/EU. Health at a Glance:Europe 2016-state of health in the EU cycle[M]. OECD Publishing Paris,2016. [3] The number of hip and knee arthroplasties in China in 2018[EB/OL]. https://www.haodf.com/zhuanjiaguandian/gaoxurendr_7591652124.htm. [4] MONTGOMERY S R,FOSTER B D,NGO S S,et al. Trends in the surgical treatment of articular cartilage defects of the knee in the United States[J]. Knee Surgery,Sports Traumatology,Arthroscopy,2014,22(9):2070-2075. [5] BULLER L T,BEST M J,BARAGA M G,et al. Trends in anterior cruciate ligament reconstruction in the United States[J]. Orthopaedic Journal of Sports Medicine,2014,3(1):23. [6] IMHOFF A B,BEITZEL K,STAMER K,et al. Rehabilitation in orthopedic surgery[M]. Springer,2016. [7] BRATTIG B,SCHABLON A,NIENHAUS A,et al. Occupational accident and disease claims,work-related stress and job satisfaction of physiotherapists[J]. Journal of Occupational Medicine Toxicology,2014,9(1):36. [8] GLOVER W. Work-related strain injuries in physiotherapists:Prevalence and prevention of musculoskeletal disorders[J]. Physiotherapy,2002,88(6):364-372. [9] CHEN B,MA H,QIN L Y,et al. Recent developments and challenges of lower extremity exoskeletons[J]. Journal of Orthopaedic Translation,2016,5(2):26-37. [10] SALTER R B,FIELD P. The effects of continuous compression on living articular cartilage:An experimental investigation[J]. The Journal of Bone and Joint Surgery,1960,42(1):31-90. [11] SALTER R B,HAMILTON H W,WEDGE J H,et al. Clinical application of basic research on continuous passive motion for disorders and injuries of synovial joints:A preliminary report of a feasibility study[J]. Journal of Orthopaedic Research,1983,1(3):325-342. [12] RENGARAJAN,RAJESHWARI. Design and development of post knee arthroscopy assist device[J]. International Journal of Biomedical Clinical Engineering,2014,3(1):18-26. [13] BENNETT L A,BREARLEY S C,HART J A,et al. A comparison of 2 continuous passive motion protocols after total knee arthroplasty:A controlled and randomized study[J]. The Journal of Arthroplasty,2005,20(2):225-233. [14] BROSSEAU L,MILNE S,WELLS G,et al. Efficacy of continuous passive motion following total knee arthroplasty:A metaanalysis[J]. The Journal of Rheumatology,2004,31(11):2251-2264. [15] MAEDA D T K,OKU T. Muscle synergy analysis of human adaptation to a variable-stiffness exoskeleton:Human walk with a knee exoskeleton with pneumatic artificial muscles[C]//201212th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2012),Osaka:IEEE,2012:638-644. [16] GROOD E S,SUNTAY W J. A joint coordinate system for the clinical description of three-dimensional motions:Application to the knee[J]. Journal of Biomechanical Engineering,1983,105(2):136. [17] HUISKES R,VAN DIJK R,DE LANGE A,et al. Kinematics of the human knee joint[M]. Berlin:Springer,1985. [18] WU G,CAVANAGH P R. ISB recommendations for standardization in the reporting of kinematic data[J]. Journal of Biomechanics,1995,28(10):1257-1261. [19] MASOUROS S,BULL A,AMIS A. (i) Biomechanics of the knee joint[J]. Orthopaedics and Trauma,2010,24(2):84-91. [20] VARELA M J,CECCARELLI M,FLORES P. A kinematic characterization of human walking by using CaTraSys[J]. Mechanism Machine Theory,2015,86:125-139. [21] PATEL V V H K,RIES M. A three-dimensional MRI analysis of knee kinematics[J]. Journal of Orthopaedic Research,2004,22(2):283-292. [22] KOMISTEK R D,DENNIS D A,MAHFOUZ M. In vivo fluoroscopic analysis of the normal human knee[J]. Clinical Orthopaedics Related Research,2003,410(410):69-81. [23] 雷静桃,唐明瑶,王君臣,等. 机器人辅助膝关节置换术的术前规划研究综述[J]. 机械工程学报,2017,53(17):78-91. LEI Jingtao,TANG Mingyao,WANG Junchen,et al. A review of researches on preoperative planning of robot-assisted knee replacement[J]. Journal of Mechanical Engineering,2017,53(17):78-91. [24] POLLET J,ARIENTI C,BOSIO F,et al. P 165-changes in gait kinematic parameters after rehabilitation in total knee arthroplasty subjects:A prospective observational pilot study[J]. Gait & Posture,2018,65:513-514. [25] ALICE B-M,STéPHANE A,YOSHISAMA S J,et al. Evolution of knee kinematics three months after total knee replacement[J]. Gait & Posture,2015,41:624-629. [26] CHIU K,NG T,TANG W,et al. Knee flexion after total knee arthroplasty[J]. Journal of Orthopaedic Surgery,2002,10(2):194-202. [27] INCAVO S J,MULLINS E R,COUGHLIN K M,et al. Tibiofemoral kinematic analysis of kneeling after total knee arthroplasty[J]. Journal of Arthroplasty,2004,19(7):906-910. [28] WITJES S,HOORNTJE A,KOENRAADT K,et al. Considerable variety in usual care rehabilitation after knee arthroplasty:A survey amongst physiotherapists[J]. Acta Orthopaedica Belgica,2018,84(3):269-278. [29] FRANSEN M,NAIRN L,BRIDGETT L,et al. Post-acute rehabilitation after total knee replacement:A multicenter randomized clinical trial comparing long-term outcomes[J]. Arthritis Care Research Quarterly for Exercise Sport,2017,69(2):192-200. [30] ARTZ N,ELVERS K T,LOWE C M,et al. Effectiveness of physiotherapy exercise following total knee replacement:Systematic review and meta-analysis[J]. BMC Musculoskeletal Disorders,2015,16(1):15. [31] MISTRY J B,ELMALLAH R D,BHAVE A,et al. Rehabilitative guidelines after total knee arthroplasty:A review[J]. The Journal of Knee Surgery,2016,29(3):201-217. [32] BISTOLFI A,FEDERICO A,CARNINO I,et al. Rehabilitation and physical therapy before and after total knee arthroplasty:A literature review and unanswered questions[J]. International Journal of Physical Medicine Rehabilitation,2016,4(4):1-7. [33] HYDE T E,GENGENBACH M S. Conservative management of sports injuries[M]. Burlington:Jones & Bartlett Learning,2007. [34] SCHOEN D C. Adult orthopaedic nursing[M]. Philadelphia:Lippincott Williams & Wilkins,2000. [35] Partial and total knee arthroplasty home exercise program[EB/OL]. https://www.sportsmednorth.com/sites/sportsmednorthV2/files/TotalKneeExerciseProgram.pdf. [36] VAN DER LOOS H M,REINKENSMEYER D J,GUGLIELMELLI E. Rehabilitation and health care robotics[M]. Berlin:Springer,2016 [37] DELISA J A,GANS B M,WALSH N E. Physical medicine and rehabilitation:Principles and practice[M]. Philadelphia:Lippincott Williams & Wilkins,2005. [38] HERR H. Exoskeletons and orthoses:Classification,design challenges and future directions[J]. Journal of Neuroengineering Rehabilitation,2009,6(1):21. [39] BOURI M,GALL B L,CLAVEL R. A new concept of parallel robot for rehabilitation and fitness:The Lambda[C]//2009 IEEE International Conference on Robotics and Biomimetics (ROBIO),Guilin:IEEE,2009:2503-2508. [40] BRADLEY D A M C,HAWLEY M. NeXOS-the design,development and evaluation of a rehabilitation system for the lower limbs[J]. Mechatronics,2009,19(2):247-257. [41] BRADLEY D A,ACOSTA-MARQUEZ C,HAWLEY M,et al. Remote rehabilitation-the NeXOS project:Lessons learnt and questions raised[C]//2009 IEEE International Conference on Rehabilitation Robotics,Tokyo:IEEE,2009:956-961. [42] HALLEY D,PAUL EWING B. The X-10:A revolution in knee rehabilitation[J]. Reconstructive Review,2013,3(1):11-16. [43] WANNAPHAN P,CHANTHASOPEEPHAN T. Position controlled knee rehabilitation orthotic device for patients after total knee replacement arthroplasty[C]//IOP Conference Series:Materials Science and Engineering,Wuhan:IOP Publishing,2016:12-30. [44] GUO B,HAN J,LI X,et al. Research and design of a new horizontal lower limb rehabilitation training robot[J]. International Journal of Advanced Robotic Systems,2016,13(1):10. [45] KOLLER-HODAC A,LEONARDO D,WALPEN S,et al. Knee orthopaedic device how robotic technology can improve outcome in knee rehabilitation[C]//2011 IEEE International Conference on Rehabilitation Robotics,Zurich:IEEE,2011:1-6. [46] KOLLER-HODAC A,LEONARDO D,WALPEN S,et al. A novel robotic device for knee rehabilitation improved physical therapy through automated process[C]//Biomedical Robotics and Biomechatronics (BioRob),20103rd IEEE RAS and EMBS International Conference on,Tokyo:IEEE,2010:820-824. [47] AKDOĞAN E,ADLI M A. The design and control of a therapeutic exercise robot for lower limb rehabilitation:Physiotherabot[J]. Mechatronics,2011,21(3):509-522. [48] AKDOĞAN E,TAçGıN E,ADLI M A. Knee rehabilitation using an intelligent robotic system[J]. Journal of Intelligent Manufacturing,2009,20(2):195. [49] AKDOĞAN E,ADLI M A,BENNETT M N. A human-machine interface design for direct rehabilitation using a rehabilitation robot[C]//CSTST 2008:Proceedings of the 5th International Conference on Soft Computing as Transdisciplinary Science and Technology,France:Cergy-Pontoise,2008:28-31. [50] AKDOĞAN E,TAÇGIN E,ADLI M A. Intelligent control of a robot manipulator for knee rehabilitation[C]//Proc. 5th IntSyst,Manuf:Symp. Intell,2006:695-703. [51] SHI D,ZHANG W,ZHANG W,et al. A review on lower limb rehabilitation exoskeleton robots[J]. Chinese Journal of Mechanical Engineering,2019,32(1):74-80. [52] LI J,ZHANG Z,TAO C,et al. Structure design of lower limb exoskeletons for gait training[J]. Chinese Journal of Mechanical Engineering,2015,28(5):878-887. [53] WU Y-N,HWANG M,REN Y,et al. Combined passive stretching and active movement rehabilitation of lower-limb impairments in children with cerebral palsy using a portable robot[J]. Neurorehabilitation and Neural Repair,2011,25(4):378-385. [54] LONDON N J,BROWN M,NEWMAN R J J P. Continuous passive motion:Evaluation of a new portable low cost machine[J]. Physiotherapy,1999,85(11):616-618. [55] O'DRISCOLL S W,GIORI N J. Continuous passive motion (CPM):Theory and principles of clinical application[J]. Journal of Rehabilitation Research Development,2000,37(2):179-188. [56] JIDAPA R,SUMET U. Design and development of touch screen based continuous passive motion device for knee rehabilitation[C]//Biomedical Engineering International Conference,Piscataway,NJ:IEEE,2012:237-241. [57] GOLGOUNEH A,BAMSHAD A,TARVIRDIZADEH B,et al. Design of a new,light and portable mechanism for knee CPM machine with a user-friendly interface[C]//2016 Artificial Intelligence and Robotics (IRANOPEN),Piscataway,NJ:IEEE,2016:103-108. [58] RAHMAN R U,RASHID A,SHAHNAZ I,et al. Smart passive rehabilitative device to enhance knee range of motion[C]//2018 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES),Kuching:IEEE,2018:161-165. [59] KARASTOYANOV D,VLADIMIR M. An intelligent system for knee and ankle rehabilitation[J]. International Journal of Mechanical,Industrial Science Engineering,2013,7(8):411-416. [60] HUNG-JUNG H,TIEN-CHI C. Hybrid CPM/CAM physiotherapy device by use of active feedback control loop[C]//First International Conference on Innovative Computing,Information and Control-Volume I (ICICIC'06),Beijing:IEEE,2006:146-149. [61] HO H J,CHEN T C. Motorized CPM/CAM physiotherapy device with sliding-mode fuzzy neural network control loop[J]. Computer Methods Programs in Biomedicine,2009,96(2):96-107. [62] TROCHIMCZUK R,KUŹMIEROWSKI T. Kinematic analysis of CPM machine supporting to rehabilitation process after surgical knee arthroscopy and arthroplasty[J]. International Journal of Applied Mechanics and Engineering,2014,19(4):841-848. [63] TROCHIMCZUK R,KUŹMIEROWSKI T,ANCHIMIUK P. Study of CPM device used for rehabilitation and effective pain management following knee alloplasty[J]. International Journal of Applied Mechanics Engineering,2017,22(1):241-251. [64] 史小华,王洪波,孙利,等. 外骨骼型下肢康复机器人结构设计与动力学分析[J]. 机械工程学报,2014,50(3):47-54. SHI Xiaohua,WANG Hongbo,SUN Li,et al. Structural design and dynamic analysis of exoskeleton lower limb rehabilitation robot[J]. Journal of Mechanical Engineering,2014,50(3):47-54. [65] 史小华. 坐/卧式下肢康复机器人研究[D]. 秦皇岛:燕山大学,2015.SHI Xiaohua. Sitting & lying systems lower limbs rehabilitation robot[D]. Qinhuangdao:Yanshan University,2015. [66] IOANA P,ANDREA D,LILIANA R,et al. Orthopaedic rehabilitation device actuated with pneumatic muscles[J]. International Journal of Advanced Robotic Systems,2014,11(7):105. [67] 胡海燕. 柔顺膝关节康复器结构及控制技术研究[D]. 南京:南京理工大学,2009. HU Haiyan. Research on the structure and control technology of compliant knee rehabilitation device[D]. Nanjing:Nanjing University of Science and Technology,2009. [68] 杨罡. 柔顺主-被动膝关节康复训练技术研究[D]. 南京:南京理工大学,2011. YANG Gang. Research on compliant active-passive knee rehabilitation training techniques[D]. Nanjing:Nanjing University of Science and Technology,2011. [69] IVLEV O. Soft fluidic actuators of rotary type for safe physical human-machine interaction[C]//2009 IEEE International Conference on Rehabilitation Robotics,Tokyo:IEEE Transactions on Biomedical Engineering,2009:1-5. [70] IVLEV O,BAIDEN D,WILKENING A,et al. Compact assistive rehabilitation devices-concept and preliminary function test[C]//World Congress on Medical Physics and Biomedical Engineering,Munich:Springer,2009:88-91. [71] MICHMIZOS K P,KREBS H I. Serious games for the pediatric anklebot[C]//20124th IEEE RAS & EMBS international conference on biomedical robotics and biomechatronics (BioRob),Rome:IEEE,2012:1710-1714. [72] WEBER-SPICKSCHEN T S,COLCUC C,HANKE A,et al. Fun during knee rehabilitation:Feasibility and acceptability testing of a new android-based training device[J]. The Open Medical Informatics Journal,2017,11(3):29-32. [73] ROBERTSON J V,ROBY-BRAMI A. Augmented feedback,virtual reality and robotics for designing new rehabilitation methods[M]. Paris:Springer,2010. [74] YOSHIOKA T,SUGAYA H,KUBOTA S,et al. Knee-extension training with a single-joint hybrid assistive limb during the early postoperative period after total knee arthroplasty in a patient with osteoarthritis[J]. Case Reports in Orthopedics,2016,9(6):1-6. [75] TAKASHI F,HIROTAKA M,KENICHI Y,et al. The training effect of early intervention with a hybrid assistive limb after total knee arthroplasty[J]. Case Reports in Orthopedics,2017,7(4):1-5. [76] RIFAï H,MOHAMMED S,HASSANI W,et al. Nested saturation based control of an actuated knee joint orthosis[J]. Mechatronics,2013,23(8):1141-1149. [77] 范渊杰. 基于sEMG与交互力等多源信号融合的下肢外骨骼康复机器人及其临床实验研究[D]. 上海:上海交通大学,2014.FAN Yuanjie. Study on lower limb exoskeleton for rehabilitation based on multi-source information fusion including sEMG & interactive force and its clinical trail[D]. Shanghai:Shanghai Jiao Tong University,2014. [78] HYUN D J,PARK H,HA T,et al. Biomechanical design of an agile,electricity-powered lower-limb exoskeleton for weight-bearing assistance[J]. Robotics Autonomous Systems,2017,95:181-195. [79] CISZKIEWICZ A,KNAPCZYK J. Parameters estimation for the spherical model of the human knee joint using vector method[J]. International Journal of Applied Mechanics Engineering,2014,19(3):523-537. [80] PARENTI-CASTELLI V,LEARDINI A,GREGORIO R D,et al. On the modeling of passive motion of the human knee joint by means of equivalent planar and spatial parallel mechanisms[J]. Autonomous Robots,2004,16(2):219-232. [81] KIM K J,KANG M S,CHOI Y S,et al. Conceptualization of an exoskeleton continuous passive motion (CPM) device using a link structure[C]//2011 IEEE International Conference on Rehabilitation Robotics,Zurich:IEEE,2011:1-6. [82] KIM K,KANG M,CHOI Y,et al. Development of the exoskeleton knee rehabilitation robot using the linear actuator[J]. International Journal of Precision Engineering and Manufacturing,2012,13(10):1889-1895. [83] OLINSKI M,GRONOWICZ A,HANDKE A. Design and characterization of a novel knee articulation mechanism[J]. International Journal of Applied Mechanics and Engineering,2016,21(3):611-622. [84] KIM H J,LIM D H,KIM W S,et al. Development of a passive modular knee mechanism for a lower limb exoskeleton robot and its effectiveness in the workplace[J]. International Journal of Precision Engineering Manufacturing,2019,21(2):227-236. [85] CAMOped active exercise device[EB/OL]. http://knee.oped.com.au/camoped/. [86] VELASCO A,ROMERO M,SOLAQUE L. Knee rehabilitation device with soft actuation:An approach to the motion control[C]//Proceedings of the 15th International Conference on Informatics in Control,Automation and Robotics. Porto:INSTICC,2018:156-162. [87] GUATIBONZA A F,SOLAQUE L,VELASCO A. Kinematic and dynamic modeling of a 5-bar assistive device for knee rehabilitation[C]//2018 IEEE Third Ecuador Technical Chapters Meeting (ETCM),Azuay:IEEE,2018:1-6. [88] ABEL G B F,ANDRES B O,HUGO O P V,et al. Design and control of a new parallel robot for the rehabilitation of the hip-knee[J]. IEEE Latin America Transactions,2018,16(5):1314-1319. [89] CHAPARRO-RICO B D M,CASTILLO-CASTANEDA E. Design of a 2DOF parallel mechanism to assist therapies for knee rehabilitation[J]. Ingenieria E Investigacion,2016,36(1):98-104. [90] CHAPARRO-RICO B,CASTILLO-CASTAñEDA E,MALDONADO-ECHEGOYEN R. Design of a parallel mechanism for knee rehabilitation[M]. Berlin:Springer,2015. [91] ROMERO-ACEVEDO M,GUATIBONZA A,VELASCO-VIVAS A. Modular knee-rehabilitation device:Configuration and workspace of assisted physical therapy routines[C]//2018 IEEE 2nd Colombian Conference on Robotics and Automation (CCRA),Barranquilla:IEEE,2018:1-6. [92] MARCHAL-CRESPO L,REINKENSMEYER D J. Review of control strategies for robotic movement training after neurologic injury[J]. Journal of Neuroengineering Rehabilitation,2009,6(1):20-25. [93] MICHNIK A,BACHORZ M,BRANDT J,et al. Rehabilitation robot prototypes developed by ITAM[J]. Prace Naukowe Politechniki Warszawskiej Elektronika,2012,182(1):51-60. [94] ORTEGA A B,LEYVA J L,VALDéS G V,et al. Control of a knee rehabilitation machine using a virtual prototype[M]. Berlin:Springer,2012. [95] 唐智川,孙守迁,张克俊. 基于运动想象脑电信号分类的上肢康复外骨骼控制方法研究[J]. 机械工程学报,2017,53(10):60-69. TANG Zhichuan,SUN Shouqian,ZHANG Kejun. Research on the control method of an upper-limb rehabilitation exoskeleton based on classification of motor imagery EEG[J]. Journal of Mechanical Engineering,2017,53(10):60-69. [96] AKDOĞAN E,ŞIŞMAN Z. A muscular activation controlled rehabilitation robot system[C]//International Conference on Knowledge-Based and Intelligent Information and Engineering Systems,Berlin:Springer,2011:271-279. [97] BAIDEN D,WILKENING A,IVLEV O. Safety and handling concept for assistive robotic devices with pneumatic rotary soft-actuators[C]//2011 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM),Budapest:IEEE,2011:754-759. [98] HUANG R,CHENG H,GUO H,et al. Hierarchical learning control with physical human-exoskeleton interaction[J]. Information Sciences,2018,43(2):584-595. [99] PILCH A. Poziom motywacji osób starszych a efekty rehabilitacji/Motivational predictors of successful rehabilitation in elderly patients[J]. Physiotherapy,2011,19(4):17-25. [100] PRATT J E,KRUPP B T,MORSE C J,et al. The RoboKnee:An exoskeleton for enhancing strength and endurance during walking[M]. IEEE Int. Conf. Robot,New Orleans:IEEE. 2004:2430-2435. [101] LüNENBURGER L,COLOMBO G,RIENER R. Biofeedback for robotic gait rehabilitation[J]. Journal of Neuroengineering and Rehabilitation,2007,4(1):1-11. [102] CORBETTA D,IMERI F,GATTI R. Rehabilitation that incorporates virtual reality is more effective than standard rehabilitation for improving walking speed,balance and mobility after stroke:a systematic review[J]. Journal of Physiotherapy,2015,61(3):117-124. [103] INSALL J N,RANAWAT C S,AGLIETTI P,et al. A comparison of four models of total knee-replacement prostheses[J]. The Journal of Bone Joint Surgery-American Volume,1976,58(6):754-765. [104] SCUDERI G R,BOURNE R B,NOBLE P C,et al. The new knee society knee scoring system[J]. Clin. Orthop. Relat. Res.,2012,470(1):3-19. [105] DAVIES A P. Rating systems for total knee replacement[J]. The Knee,2002,9(4):261-266. [106] SCHOTANUS M G M,BEMELMANS Y F L,GRIMM B. Physical activity after outpatient surgery and enhanced recovery for total knee arthroplasty[J]. Knee Surgery,Sports Traumatology,Arthroscopy,2017,25(11):3366-3371. [107] BOLINK S,GRIMM B,HEYLIGERS I C. Patient-reported outcome measures versus inertial performance-based outcome measures:A prospective study in patients undergoing primary total knee arthroplasty[J]. The Knee,2015,22(6):618-623. [108] RIENER R,LüNENBURGER L,MAIER I C,et al. Locomotor training in subjects with sensori-motor deficits:An overview of the robotic gait orthosis lokomat[J]. Journal of Healthcare Engineering,2010,1(2):197-216. [109] CAPLAN N,KADER D F. Rationale of the knee society clinical rating system[M]. Berlin:Springer,2014. [110] WHITEHOUSE S L,BLOM A W,TAYLOR A H,et al. The Oxford knee score; problems and pitfalls[J]. The Knee,2005,12(4):287-291. [111] MCHORNEY C A,WARE JR J E,RACZEK A E. The MOS 36-item short-form health survey (SF-36):II. Psychometric and clinical tests of validity in measuring physical and mental health constructs[J]. Medical Care,1993,4(2):247-263. [112] SHEN Z,YU H,WANG J,et al. Modified western ontario and McMaster university osteoarthritis index scale used in patients with knee osteoarthritis[J]. Zhonghua Yi Xue Za Zhi,2019,99(7):537-541. [113] SMITH H,RICHARDSON J,TENNANT A. Modification and validation of the lysholm knee scale to assess articular cartilage damage[J]. Osteoarthritis and Cartilage,2009,17(1):53-58. [114] COLLINS N,PRINSEN C,CHRISTENSEN R,et al. Knee injury and osteoarthritis outcome score (KOOS):Systematic review and meta-analysis of measurement properties[J]. Osteoarthritis and Cartilage,2016,24(8):1317-1329. [115] BEKKERS J,DE WINDT T S,RAIJMAKERS N,et al. Validation of the knee injury and osteoarthritis outcome score (KOOS) for the treatment of focal cartilage lesions[J]. Osteoarthritis and Cartilage,2009,17(11):1434-1439. [116] MADETI B K,CHALAMALASETTI S R. Biomechanics of knee joint——A review[J]. Frontiers of Mechanical Engineering,2015,10(2):176-186. [117] ARIANI A,KAPADIA V,TALAEI-KHOEI A,et al. Challenges in seniors adopting assistive robots:A systematic review[J]. The International Technology Management Review,2016,6(2):25-36. |
[1] | YAO Yufeng, PEI Shuo, GUO Junlong, WANG Jiajia. Review of Research on Upper-limb Rehabilitation Training Robots [J]. Journal of Mechanical Engineering, 2024, 60(11): 115-134. |
[2] | LI Xin, YANG Yu, CHENG Jian, CHENG Jun-sheng. Robustness Imbalanced Convex Hull-based Classification for Bevel Gearbox Fault Diagnosis [J]. Journal of Mechanical Engineering, 2023, 59(8): 32-41. |
[3] | LIU Chunlei, PANG Pengfei, SHI Wenhe, KONG Linghao, HUANG Xun, QI Jun. Research and Engineering Application of Non-intrusive Load Dynamic Identification Method [J]. Journal of Electrical Engineering, 2023, 18(3): 307-314. |
[4] | XIA Guang, LI Jiacheng, TANG Xiwen, ZHANG Yang, CHEN Wuwei. Research on Anti-rollover Control of Counterweight Forklift Based on Roll Energy Classification [J]. Journal of Mechanical Engineering, 2023, 59(10): 275-289. |
[5] | ZAI Hongbin, LIU Jianguo, ZHANG Wengang, FENG Shiyong, ZU Guoqiang. Insulator Condition Monitoring Method of Distribution Line Based on Deep Transfer Learning [J]. Journal of Electrical Engineering, 2022, 17(4): 275-281. |
[6] | LI Ke, QI Yang, SU Lei, GU Jiefei, SU Wensheng. Visual Inspection of Steel Surface Defects Based on Improved Auxiliary Classification Generation Adversarial Network [J]. Journal of Mechanical Engineering, 2022, 58(24): 32-40. |
[7] | YANG Wei, HUANG Lihong, QU Xiaolei. Dual Attention Network for the Classification of Road Surface Conditions Based on EfficientNet [J]. Journal of Mechanical Engineering, 2022, 58(24): 211-222. |
[8] | XING Shixiong, JIANG Zhigang, ZHU Shuo, ZHANG Hua. Research on Optimization Method for Parts Selection of Remanufactured Products Under Dimensional Accuracy Constraints [J]. Journal of Mechanical Engineering, 2022, 58(19): 221-228. |
[9] | LIN Zening, JIANG Tao, LUO Zirong, BAI Xiangjuan, SHANG Jianzhong. Research Progress of Muscle-driven Robots Based on Living Tissue [J]. Journal of Mechanical Engineering, 2022, 58(13): 22-35. |
[10] | MENG Zong, GUAN Yang, PAN Zuozhou, SUN Dengyun, FAN Fengjie, CAO Lixiao. Fault Diagnosis of Rolling Bearing Based on Secondary Data Enhancement and Deep Convolutional Network [J]. Journal of Mechanical Engineering, 2021, 57(23): 106-115. |
[11] | WU Shengchuan, HU Yanan, YANG Bing, ZHANG Haiou, GUO Guangping, KANG Guozheng. Review on Defect Characterization and Structural Integrity Assessment Method of Additively Manufactured Materials [J]. Journal of Mechanical Engineering, 2021, 57(22): 3-34. |
[12] | XU Peng, GENG Ming, FANG Zhou, ZHU Chenlu, ZENG Hongming, WANG Ping. Study on High-Speed Rail Defect Detection Method Based on Combination of EC and MFL Testing [J]. Journal of Mechanical Engineering, 2021, 57(18): 57-65. |
[13] | XIANG Jiawei. Numerical Model Driving Personalized Diagnosis Principle for Fault Detection in Mechanical Transmission Systems [J]. Journal of Mechanical Engineering, 2021, 57(15): 116-128. |
[14] | WANG Yan, YIN Guodong, GENG Keke, DONG Haoxuan, LIU Shuaipeng, CHEN Nan. Active Collision Avoidance Adaptive Control Based on Identification of Different Emergency Conditions [J]. Journal of Mechanical Engineering, 2020, 56(4): 115-124. |
[15] | YANG Rui, LI Hongkun, WANG Chaoge, HAO Baitian. Intelligent Fault Detection for Rolling Element Bearing Based on FCKT and Deep Auto-coding Neural Network [J]. Journal of Mechanical Engineering, 2019, 55(7): 65-72. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||