[1] 雷亚国,贾峰,孔德同,等. 大数据下机械智能故障诊断的机遇与挑战[J]. 机械工程学报,2018,54(5):94-104. LEI Yaguo,JIA Feng,KONG Detong,et al. Opportunities and challenges of machinery intelligent fault diagnosis in big data era[J]. Journal of Mechanical Engineering,2018,54(5):94-104. [2] 工业互联网产业联盟. 中国工业大数据技术与应用白皮书[EB/OL].[2017-07-03]. http://www.aii-alliance.org/index.php?m=content&c=index&a=show&catid=23&id=142.Alliance of Industrial Internet. White paper on technology and application of big data in China industry[EB/OL].[2017-07-03]. http://www.aii-alliance.org/index.php?m=content&c=index&a=show&catid=23&id=142. [3] TALEB I,DSSOULI R,SERHANI M A. Big data pre-processing:A quality framework[C]//in 2015 IEEE International Congress on Big Data (BigData Congress),New York,USA,June 27-July 2,2015. IEEE,2015:191-198. [4] JABŁOŃSKI A,BARSZCZ T. Validation of vibration measurements for heavy duty machinery diagnostics[J]. Mechanical Systems and Signal Processing,2013,38(1):248-263. [5] LEE J,KAO H A,YANG S. Service innovation and smart analytics for industry 4.0 and big data environment[J]. Procedia CIRP,2014,16:3-8. [6] JABŁOŃSKI A,BARSZCZ T,BIELECKA M. Automatic validation of vibration signals in wind farm distributed monitoring systems[J]. Measurement,2011,44(10):1954-1967. [7] 雷亚国,贾峰,周昕,等. 基于深度学习理论的机械装备大数据健康监测方法[J]. 机械工程学报,2015,51(21):49-56. LEI Yaguo,JIA Feng,ZHOU Xin,et al. A deep learning-based method for machinery health monitoring with big data[J]. Journal of Mechanical Engineering,2015,51(21):49-56. [8] LEI Yaguo,YANG Bin,JIANG Xinwei,et al. Applications of machine learning to machine fault diagnosis:A review and roadmap[J]. Mechanical Systems and Signal Processing,2020,138:106587. [9] NAJAFABADI M M,VILLANUSTRE F,KHOSHGOFTAAR T M,et al. Deep learning applications and challenges in big data analytics[J]. Journal of Big Data,2015,2(1):1-21. [10] QIU Junfei,WU Qihui,DING Guoru,et al. A survey of machine learning for big data processing[J]. EURASIP Journal on Advances in Signal Processing,2016,2016(67):1-16. [11] XU Xuefang,LEI Yaguo,LI Zeda. An incorrect data detection method for big data cleaning of machinery condition monitoring[J]. IEEE Transactions on Industrial Electronics,2020,67(3):2326-2336. [12] XU S,LU B,BALDEA M,et al. Data cleaning in the process industries[J]. Reviews in Chemical Engineering,2015,31(5):453-490. [13] 张康,黄亦翔,赵帅,等. 基于t-SNE数据驱动模型的盾构装备刀盘健康评估[J]. 机械工程学报,2019,55(7):19-26. ZHANG Kang,HUANG Yixiang,ZHAO Shuai,et al. Health assessment of shield equipment cutterhead based on t-SNE data-driven model[J]. Journal of Mechanical Engineering,2019,55(7):19-26. [14] 胡阳,乔依林. 基于置信等效边界模型的风功率数据清洗方法[J]. 电力系统自动化,2018,42(15):18-23. HU Yang,QIAO Yilin. Wind power data cleaning method based on confidence equivalent boundary model[J]. Automation of Electric Power Systems,2018,42(15):18-23. [15] QU Fuming,LIU Jinhai,MA Yanjuan,et al. A novel wind turbine data imputation method with multiple optimizations based on GANs[J]. Mechanical Systems and Signal Processing,2020,139:106610. [16] 张贤达. 矩阵分析与应用[M]. 北京:清华大学出版社,2013. ZHANG Xianda. Matrix analysis and application[M]. Beijing:Tsinghua University Press,2013. [17] CICHOCKI A,MANDIC D,LATHAUWER L D,et al. Tensor decompositions for signal processing applications:From two-way to multiway component analysis[J]. IEEE Signal Processing Magazine,2015,32(2):145-163. [18] 杨立东,王晶,谢湘,等. 基于低秩张量补全的多声道音频信号恢复方法[J]. 电子与信息学报,2016,38(2):394-399 YANG Lidong,WANG Jing,XIE Xiang,et al. Low rank tensor completion for recovering missing data in multi-channel audio signal[J]. Journal of Electronics & Information Technology,2016,38(2):394-399. [19] TAN Huachun,FENG Guangdong,FENG Jianshuai,et al. A tensor-based method for missing traffic data completion[J]. Transportation Research Part C,2013,28:15-27. [20] ACAR E,DUNLAVY D M,KOLDA T G,et al. Scalable tensor factorizations for incomplete data[J]. Chemometrics and Intelligent Laboratory Systems,2011,106(1):41-56. [21] FARUK D Ö. A hybrid neural network and ARIMA model for water quality time series prediction[J]. Engineering Applications of Artificial Intelligence,2010,23(4):586-594. [22] SON H,KIM C. Forecasting short-term electricity demand in residential sector based on support vector regression and fuzzy-rough feature selection with particle swarm optimization[J]. Procedia engineering,2015,118:1162-1168. |