Journal of Mechanical Engineering ›› 2020, Vol. 56 ›› Issue (13): 1-15.doi: 10.3901/JME.2020.13.001
QI Youchao1,2, ZHAO Junqing1,2, ZHANG Chi1,2
Received:
2019-07-25
Revised:
2019-09-28
Online:
2020-07-05
Published:
2020-08-01
CLC Number:
QI Youchao, ZHAO Junqing, ZHANG Chi. Review and Prospect of Micro-nano Vibration Energy Harvesters[J]. Journal of Mechanical Engineering, 2020, 56(13): 1-15.
[1] DING Wenxiu,JING Xuyang,YAN Zheng,et al. A survey on data fusion in internet of things:Towards secure and privacy-preserving fusion[J]. Information Fusion,2019,51:129-144. [2] GILBERT J M,BALOUCHI F. Comparison of energy harvesting systems for wireless sensor networks[J]. International Journal of Automation and Computing,2008,5(4):334-347. [3] LUKATSKAYA M R,DUNN B,GOGOTSI Y. Multidimensional materials and device architectures for future hybrid energy storage[J]. Nature. Communications.,2016,7:12647. [4] GUAN M J,LIAO W H. On the efficiencies of piezoelectric energy harvesting circuits towards storage device voltages[J]. Smart Materials & Structures,2007,16(2):498-505. [5] YILDIRIM T,GHAYESH M H,LI W,et al,A review on performance enhancement techniques for ambient vibration energy harvesters[J]. Renewable and Sustainable Energy Reviews,2017,71:435-449. [6] NIU Simiao,WANG Xiaofeng,YI Fang,et al,A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics[J]. Nature Communications,2015,6:8975. [7] ROUNDY S,WRIGHT P K,PISTER K S. In Micro-electrostatic vibration-to-electricity converters[C]//ASME 2002 International Mechanical Engineering Congress and Exposition,American Society of Mechanical Engineers,2002:487-496. [8] PARK J Y,SAL A M,RASEL M. SALAUDDIN. Nanogenerator for scavenging low frequency vibrations[J]. Journal of Micromechanics and Microengineering,2019,29(5):ab0241. [9] BEEBY S P,TORAH R N,TUDOR M J,et al. A micro electromagnetic generator for vibration energy harvesting[J]. Journal of Micromechanics and Microengineering,2007,17(7):1257-1265. [10] GUPTA K,BRAHMA S,DUTTA J,et al. Recent progress in microstructure development of inorganic one-dimensional nanostructures for enhancing performance of piezotronics and piezoelectric nanogenerators[J]. Nano Energy,2019,55:1-21. [11] AHMED R M,FARIHA B S. A review on energy harvesting approaches for renewable energies from ambient vibrations and acoustic waves using piezoelectricity[J]. Smart Materials and Structures,2017,26(8):085031. [12] AHMAD S,ABDUL M M,FAROOQI M A. Energy harvesting from pavements and roadways:A comprehensive review of technologies,materials,and challenges[J]. International Journal of Energy Research,2019,43(6):1974-2015. [13] MARIELLO M,GUIDO F,MASTRONARDI V M,et al,Nanogenerators for harvesting mechanical energy conveyed by liquids[J]. Nano Energy,2019,57:141-156. [14] AMIRTHARAJAH R,CHANDRAKASAN A P. Self-powered signal processing using vibration-based power generation[J]. IEEE Journal of Solid-State Circuits,1998,33(5):687-695. [15] 孟祥凯,侯玉亮. 振动能量收集技术的近况与展望[J]. 科技与创新,2019(11):94-95. MENG Xiangkai,HOU Luliang. Review and prospect of vibration energy harvesting technology[J]. Science and Technology & Innovation,2019(11):94-95. [16] KYMISSIS J,KENDALL C,PARADISO J,et al. Parasitic power harvesting in shoes[C]//Digest of Papers. Second International Symposium on Wearable Computers (Cat. No. 98EX215),IEEE:1998:132-139. [17] FAN Fengru,TIAN Zhongqun,WANG Zhonglin. Flexible triboelectric generator[J]. Nano Energy,2012,1(2):328-334. [18] 王中林,林龙,陈俊,等. 摩擦纳米发电机[M]. 北京:科学出版社,2017. WANG Zhonglin,LIN Long,CHEN Jun,et al. Triboelectric nanogenerators[M]. Beijing:Science Press,2017. [19] RYU H,YOON H J,KIM S W. Hybrid energy harvesters:Toward sustainable energy harvesting[J]. Adv. Mater.,2019:e1802898. [20] 颜琳,王小云,全秀娥. 动生电动势的产生机理[J] 吉首大学学报,2007(1):70-72,117. YAN Lin,WANG Xiaoyun,QUAN Xiue. Mechanism of production of motional electromotive force[J]. Journal of Jishou University,2007(1):70-72,117. [21] HOU Wenqi,LI Yankun,GUO Wei,et al. Railway vehicle induced vibration energy harvesting and saving of rail transit segmental prefabricated and assembling bridges[J]. Journal of Cleaner Production,2018,182:946-959. [22] LIN Teng,WANG J J,ZUO Lei. Efficient electromagnetic energy harvester for railroad transportation[J]. Mechatronics,2018,53:277-286. [23] THOLL M V,HAEBERLIN A,MEIER B,et al. An intracardiac flow based electromagnetic energy harvesting mechanism for cardiac pacing[J]. IEEE Trans. Biomed. Eng.,2019,66(2):530-538. [24] WILLIAMS C B,SHEARWOOD C,HARRADINE M A,et al. Development of an electromagnetic micro-generator[J]. IEE Proceedings-Circuits,Devices and Systems,2001,148(6):337-347. [25] ZHANG L B,DAI H L,YANG Y W,et al. Design of high-efficiency electromagnetic energy harvester based on a rolling magnet[J]. Energy Conversion and Management,2019,185:202-210. [26] FAN Kangqi,TAN Qinxue,LIU Haiyan,et al. Harvesting energy from twisting vibration of a rotor suspended by a piece of string[J]. Smart Materials and Structures,2019,28(7):07LT01. [27] CHAE S H,JU S,CHOI Y,et al. Electromagnetic vibration energy harvester using springless proof mass and ferrofluid as a lubricant[J]. Journal of Physics:Conference Series,2013,476:012013. [28] BHOSALE A,ANDERSON A,DESHMUKH P S. Voltage enhancing using multi-magnetic arrangement for low frequency vibrational energy harvesting[J]. Journal of Vibroengineering,2018,20(4):1720-1732. [29] ZHAO Ning,LUO Hao,LIANG Pengwei,et al. The design and implementation of electromagnetic vibration energy acquisition system[J]. Energy Procedia,2017,136:34-40. [30] KULAH H,NAJAFI K. An electromagnetic micro power generator for low-frequency environmental vibrations[C]//17th IEEE International Conference on Micro Electro Mechanical Systems. Maastricht MEMS 2004 Technical Digest,IEEE:2004:237-240. [31] CHEN Jingfan,DENG Wei,WANG Ya,et al. Parametric study of low frequency broadband rectilinear-to-rotary vibrational energy harvesting[J]. Transactions of Nanjing University of Aeronautics and Astronautics,2018(1):1-9. [32] CHEN Jingfan,WANG Ya. A dual electromagnetic array with intrinsic frequency up-conversion for broadband vibrational energy harvesting[J]. Applied Physics Letters,2019,114(5):053902. [33] ZHANG Jin,WANG Chengyuan,BOWEN C. Piezoelectric effects and electromechanical theories at the nanoscale[J]. Nanoscale,2014,6(22):13314-13327. [34] PRIYA S,INMAN D J. Energy harvesting technologies[M]. London:Springer:2009. [35] FLYNN A M,SANDERS S R. Fundamental limits on energy transfer and circuit considerations for piezoelectric transformers In Pesc 98 Record-29th Annual IEEE Power Electronics Specialists Conference,IEEE,1998:1463-1471. [36] LEE M,CHEN C,WANG Sihong,et al. A hybrid piezoelectric structure for wearable nanogenerators[J]. Advanced Materials,2012,24(13):1759-1764. [37] SUN Chengliang,SHI Jian,BAYERL D J,et al. PVDF microbelts for harvesting energy from respiration[J]. Energy & Environmental Science,2011,4(11):4508-4512. [38] 徐振龙,单小彪,谢涛. 宽频压电振动俘能器的研究现状综述[J]. 振动与冲击,2018,37(8):190-199. XU Zhenlong,SHAN Xiaoiao,XIE Tao. A review of broadband piezoelectric vibration energy harvester[J]. Joural of Vibration and Shock,2018,37(8):190-199. [39] 张旭辉,谭厚志,杨文娟,等. 多方向压电振动能量收集技术研究与进展[J]. 压电与声光,2019,41(2):140-149. ZHANG Xuhui,TAN Houzhi,YANG Wenjuan,et al. Research and development of multi-directional piezoelectric vibration energy harvesting technology[J]. Piezoeletrics & Acoustooptics,2019,41(2):140-149. [40] WU Yipeng,QIU Jinhao,ZHOU Shengpeng,et al. A piezoelectric spring pendulum oscillator used for multi-directional and ultra-low frequency vibration energy harvesting[J]. Applied Energy,2018,231,600-614. [41] JIANG Laiming,YANG Yang,CHEN Ruimin,et al. Flexible piezoelectric ultrasonic energy harvester array for bio-implantable wireless generator[J]. Nano Energy,2019,56:216-224. [42] ZHANG Jinhui,QIN Lifeng. A tunable frequency up-conversion wideband piezoelectric vibration energy harvester for low-frequency variable environment using a novel impact- and rope-driven hybrid mechanism[J]. Applied Energy,2019,240:26-34. [43] ZHAO Liya,YANG Yaowen. An impact-based broadband aeroelastic energy harvester for concurrent wind and base vibration energy harvesting[J]. Applied Energy,2018,212:233-243. [44] FU Jing,HOU Yudong,GAO Xin,et al. Highly durable piezoelectric energy harvester based on a PVDF flexible nanocomposite filled with oriented BaTi2O5 nanorods with high power density[J]. Nano Energy,2018,52:391-401. [45] MAURYA D,KUMAR P,KHALEGHIAN S,et al. Energy harvesting and strain sensing in smart tire for next generation autonomous vehicles[J]. Applied Energy,2018,232:312-322. [46] LI Xiangyang,UPADRASHTA D,YU Kaiping,et al. Sandwich piezoelectric energy harvester:Analytical modeling and experimental validation[J]. Energy Conversion and Management,2018,176,69-85. [47] WANG Zhonglin,WANG A. On the origin of contact-electrification[J]. Materials Today,2019(5):16. [48] WANG Zhonglin. On Maxwell's displacement current for energy and sensors:The origin of nanogenerators[J]. Materials Today,2017,20(2):74-82. [49] XU Liang,Bu Tianzhao,YANG Xiaodan,et al. Ultrahigh charge density realized by charge pumping at ambient conditions for triboelectric nanogenerators[J]. Nano Energy,2018,49:625-633. [50] WANG Sihong,LIN Long,WANG Zhonglin. Triboelectric nanogenerators as self-powered active sensors[J]. Nano Energy,2015,11,436-462. [51] ZHANG Chi,TANG Wei,HAN Changbao,et al. Theoretical comparison,equivalent transformation,and conjunction operations of electromagnetic induction generator and triboelectric nanogenerator for harvesting mechanical energy[J]. Adv. Mater.,2014,26(22):3580-91. [52] ZHAO Junqing,ZHEN Gaowei,LIU Guoxu,et al. Remarkable merits of triboelectric nanogenerator than electromagnetic generator for harvesting small-amplitude mechanical energy[J]. Nano Energy,2019,61,111-118. [53] XIAO Tianxiao,LIANG Xi,JIANG Tao,et al. Spherical triboelectric nanogenerators based on spring-assisted multilayered structure for efficient water wave energy harvesting[J]. Advanced Functional Materials,2018,28(35):1802634. [54] WANG Xiaofeng,NIU Simiao,YI Fang,et al. Harvesting ambient vibration energy over a wide frequency range for self-powered electronics[J]. ACS Nano,2017,11(2):1728-1735. [55] BHATIA D,HWANG H J,HUYNH N D,et al. Continuous scavenging of broadband vibrations via omnipotent tandem triboelectric nanogenerators with cascade impact structure[J]. Science Report,2019,9(1):8223. [56] XU Minyi,WANG Peihong,WANG Yicheng,et al. A soft and robust spring based triboelectric nanogenerator for harvesting arbitrary directional vibration energy and self-powered vibration sensing[J]. Advanced Energy Materials,2017:201702432. [57] CHOY T H,OYING Ying,ZHOU Feichi,et al. Enhanced output power of a freestanding ball-based triboelectric generator through the electrophorus effect[J]. Journal of Materials Chemistry A,2018,38(6),18518-18524. [58] KIM D Y,KIM H S,KONG D S,et al. Floating buoy-based triboelectric nanogenerator for an effective vibrational energy harvesting from irregular and random water waves in wild sea[J]. Nano Energy,2018,45:247-254. [59] WU Chaoxing,PARK J H,KOO B,et al. Capsule triboelectric nanogenerators:Toward optional 3D integration for high output and efficient energy harvesting from broadband-amplitude vibrations[J]. ACS Nano,2018,12(10):9947-9957. |
[1] | YANG Liu, GAO Tianxiong, SONG Yanhe, KONG Xiangdong, ZHANG Shilin. Study on Structure Optimization of Proportional Solenoid Pole Shoe Based on Taguchi Method [J]. Journal of Mechanical Engineering, 2024, 60(8): 329-336. |
[2] | CHEN Qinghua, YANG Yunfan, GE Xin, LING Liang, WANG Kaiyun. Research on Anti-slip Control Strategy of Metro Train Based on the Electromagnetic Force [J]. Journal of Mechanical Engineering, 2024, 60(6): 334-341. |
[3] | MA Zhaozhao, ZHOU Ruiping, YANG Qingchao, LEE Heow Pueh, CHAI Kai. Dynamic Characteristics of a Two-stage Quasi-zero-stiffness Vibration Isolation System with Electromagnetic Shunt Damping [J]. Journal of Mechanical Engineering, 2024, 60(5): 157-168. |
[4] | TAI Yuping, ZHU Xiaoyang, LI Hongke, YU Zhihao, ZHANG Houchao, ZHANG Fan, ZHANG Guangming, ZHAO Juan, ZHAO Jiawei, HUANG Youqi, LAN Hongbo. Electric Field Driven Hybrid Micro and Nano 3D Printing of Low Frequency Transparent Electromagnetic Shielding Glass [J]. Journal of Mechanical Engineering, 2024, 60(3): 305-318. |
[5] | SHI Yilei, QUAN Yinzhu, XU Haiying, WANG Zhuang, MA Wenlong, PENG Yong. Factors Analysis on the Electron Beam Waist Position of Gas Discharger Electron Beam Gun of Coaxial Beam Wire [J]. Journal of Mechanical Engineering, 2024, 60(3): 328-336. |
[6] | LI Bo, JIANG Jinhao, GE Wenqing, WANG Geng, TAN Cao, LU Jiayu. Analytical Modeling Method of Electromagnetic Linear Drive Device Combining Magnetic Potential Vector Model and Equivalent Surface Current Model [J]. Journal of Mechanical Engineering, 2024, 60(20): 261-270. |
[7] | PENG Wen, ZHANG Li, LI Xudong, LIU Jun, SUN Jie, ZHANG Dianhua. Thermal Behavior and Temperature Uniformity of Rolling Parts during Edge Induction Heating [J]. Journal of Mechanical Engineering, 2024, 60(2): 119-131. |
[8] | ZHANG Yongshun, LIU Gaoren, LIU Zhijun, LIU Zhenhu, DONG Hai. Decoupling Drive Mechanism of a New Type of Electromagnetic Spherical Wrist [J]. Journal of Mechanical Engineering, 2024, 60(19): 1-10. |
[9] | LI Honghao, LU Zhirong, WANG Xiaoming, TAN Shujun, ZHOU Wenya. Optimal Dynamic Deformation Control of Active Reflector Based on Acceleration Representation of Objective Function [J]. Journal of Mechanical Engineering, 2024, 60(19): 32-39. |
[10] | TIAN Bo, LOU Junqiang, SHEN Jiaxu, LIU Li, CHENG Tehuan, LI Guoping, WEI Yanding. Design, Fabrication and Realization of a Parallel Microrobot at the Millimeter Scale for Minimally Invasive Surgery [J]. Journal of Mechanical Engineering, 2024, 60(17): 147-155. |
[11] | GAO Shuai, HAN Qinkai, CHU Fulei. High-speed Hybrid Ceramic Triboelectric Rolling Bearing with Revolution Stability Monitoring Characteristics [J]. Journal of Mechanical Engineering, 2024, 60(15): 80-88. |
[12] | ZHOU Jianxi, LIN Jinfan, HONG Xiaobin, YANG Dingmin. Design of Adjustable-force Piezoelectric Array Ultrasonic Guided Waves Sensor for Messenger Cable and Damage Detection [J]. Journal of Mechanical Engineering, 2024, 60(14): 42-50. |
[13] | XU Chenqi, ZHU Changsheng. Electromagnetic Vibration Analysis Method of Electrical Machines Based on Electromagnetic-structural-circuit Bidirectional Couplings [J]. Journal of Mechanical Engineering, 2024, 60(11): 156-168. |
[14] | XU Meng, YANG Yiling, WU Gaohua, CUI Yuguo, WEI Yanding. Two-degree-of-freedom Parallel Piezoelectric Stick-slip Positioning Platform [J]. Journal of Mechanical Engineering, 2024, 60(11): 250-258. |
[15] | CAO Jie, WANG Zheng, HUA Jing, ZHANG Zhongqiang, CHENG Guanggui, DING Jianning. Research on Contactless Gesture Unlocking Technology Based on Electrostatic Induction [J]. Journal of Mechanical Engineering, 2024, 60(11): 309-317. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||