[1] LIAO J P, ZHANG J F, FENG P F, et al. Interface contact pressure-based virtual gradient material model for the dynamic analysis of the bolted joint in machine tools[J]. Journal of Mechanical Science and Technology, 2016, 30(10):4511-4521. [2] LI S, GAO H L, LIU Q, et al. Dynamic modeling method of the bolted joint with uneven distribution of joint surface pressure[J]. AIP Advances, 2018, 8(3):035116. [3] YU Y, CHO Y, LEE D, et al. Analysis of contact stiffness and bending stiffness according to contact angle of curvic coupling[J]. Tribology and Lubricants, 2018, (1):23-32. [4] BURDEKIN M, BACK N, COWLEY A. Analysis of the local deformations in machine joints[J]. Journal of Mechanical Engineering Science, 1979, 21(1):25-32. [5] ChANG W R, ETSION I, BOGY D. Static friction coefficient model for metallic rough surfaces[J]. Journal of Tribology, 1988, 110(1):57-63. [6] ZHAI C, GAN Y, HANAOR D, et al. The role of surface structure in normal contact stiffness[J]. Experimental Mechanics, 2016, 56(3):359-368. [7] ZHU L, LI H, WANG W. Research on rotary surface topography by orthogonal turn-milling[J]. The International Journal of Advanced Manufacturing Technology, 2013, 69(9-12):2279-2292. [8] GREENWOOD J, WILLIAMSON J P. Contact of nominally flat surfaces[J]. Proceedings of the royal society of London. Series A. Mathematical and Physical Sciences, 1966, 295(1442):300-319. [9] CHANG W, ETSION I, BOGY D B. An elastic-plastic model for the contact of rough surfaces[J]. Journal of Tribology, 1987, 109(2):257-263. [10] ZHAO Y, MAIETTA D M, CHANG L. An asperity microcontact model incorporating the transition from elastic deformation to fully plastic flow[J]. Journal of Tribology, 2000, 122(1):86-93. [11] KOGUT L, ETSION I. Elastic-plastic contact analysis of a sphere and a rigid flat[J]. Journal of Applied Mechanics, 2002, 69(5):657-662. [12] KOGUT L, ETSION I. A finite element based elasticplastic model for the contact of rough surfaces[J]. Tribology Transactions, 2003, 46(3):383-390. [13] IIDA K, ONO K. Design consideration of contact/nearcontact sliders based on a rough surface contact model[J]. Journal of Tribology, 2003, 125(3):562-570. [14] SHI X, POLYCARPOU A A. Investigation of contact stiffness and contact damping for magnetic storage head-disk interfaces[J]. Journal of Tribology, 2008, 130(2):021901. [15] VAKIS A I. Asperity interaction and substrate deformation in statistical summation models of contact between rough surfaces[J]. Journal of Applied Mechanics, 2014, 81(4):041012. [16] TRUSTER T J, ERITEN M, POLYCARPOU A A, et al. Stabilized interface methods for mechanical joints:Physics-based models and variationally consistent embedding[J]. International Journal of Solids and Structures, 2013, (14-15):2132-2150. [17] 李玲,李治强,张健,等. 含硬涂层结构的表面微观接触新模型[J]. 振动与冲击, 2018, 37(3):195-201. LI Ling, LI Zhiqiang, ZHANG Jian, et al. A new microcontact model for rough surface with a hard-coating[J]. Journal of Vibration and Shock, 2018, 37(3):195-201. [18] POPOV V. Contact mechanics and friction:Physical principles and applications[M]. Heidelberg:Springer Berlin, 2010. [19] GONZALEZ-VALADEZ M, BALTAZAR A, DWYER-JOYCE R. Study of interfacial stiffness ratio of a rough surface in contact using a spring model[J]. Wear, 2010, 268(3-4):373-379. [20] CIAVARELLA M, GREENWOOD J, PAGGI M. Inclusion of "interaction" in the Greenwood and Williamson contact theory[J]. Wear, 2008, 265(5-6):729-734. [21] SHERIF H A, KOSSA S. Relationship between normal and tangential contact stiffness of nominally flat surfaces[J]. Wear, 1991, 151(1):49-62. [22] KROLIKOWSKI J, SZCZEPEK J. Assessment of tangential and normal stiffness of contact between rough surfaces using ultrasonic method[J]. Wear, 1993, 160(2):253-258. [23] NAGY P B. Ultrasonic classification of imperfect interfaces[J]. Journal of Nondestructive Evaluation, 1992(3-4):127-139. [24] GONZALEZ-VALADEZ M, BALTAZAR A, DWYERJOYCE R S. Study of interfacial stiffness ratio of a rough surface in contact using a spring model[J]. Wear, 2010, 268(3-4):373-379. |