[1] LEE K Y,MOONEY D J. Hydrogels for tissue engineering[J]. Chemical Reviews,2001,101(7):1869-1880. [2] HE Y,YANG F F,ZHAO H M,et al. Research on the printability of hydrogels in 3D bioprinting[J]. Scientific Reports,2016,6:29977. [3] 王身国. 组织工程细胞支架及其相关技术研究[J]. 中国组织工程研究与临床康复,2001(16):16-17. WANG Shenguo. Tissue engineering cell scaffold and related technology research[J]. Chinese Journal of Tissue Engineering Research and Clinical Rehabilitation,2001(16):16-17. [4] PEREIRA R F,BARRIAS C C,GRANJA P L,et al. Advanced biofabrication strategies for skin regeneration and repair.[J]. Nanomedicine,2013,8(4):603-621. [5] NICHOL J W,KOSHY S,BAE H,et al. Cell-laden microengineered gelatin methacrylate hydrogels[J]. Biomaterials,2010,31(21):5536-5544. [6] YUE K,SANTIAGO T D,ALVAREZ M M,et al. Synthesis,properties,and biomedical applications of gelatin methacryloyl (GelMA) hydrogels[J]. Biomaterials,2015,73:254-271. [7] PEPELANOVA I,KRUPPA K,SCHEPER T,et al. Gelatin-methacryloyl (GelMA) hydrogels with defined degree of functionalization as a versatile toolkit for 3D cell culture and extrusion bioprinting[J]. Bioengineering,2018,5(3):55-69. [8] Van DEN B A I,BOGDANOV B,De ROOZE N,et al. Structural and rheological properties of methacrylamide modified gelatin hydrogels[J]. Biomacromolecules,2000,1(1):31-38. [9] KLOTZ B J,GAWLITTA D,ROSENBERG A J W P,et al. Gelatin-methacryloyl hydrogels:Towards biofabrication-based tissue repair[J]. Trends in Biotechnology,2016,34(5):394-407. [10] ZHU W,QU X,ZHU J,et al. Direct 3D bioprinting of prevascularized tissue constructs with complex microarchitecture[J]. Biomaterials,2017,124:106-115. [11] LUIZ E B,JULIANA C C,VIJAYAN M,et al. Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels[J]. Biofabrication,2014,6(2):024105. [12] MONTEIRO N,THRIVIKRAMAN G,ATHIRASALA A,et al. Photopolymerization of cell-laden gelatin methacryloyl hydrogels using a dental curing light for regenerative dentistry[J]. Dental Materials Official Publication of the Academy of Dental Materials,2017,34(3):389-399. [13] LIN CH,SU JJ-M,LEE SY,et al. Stiffness modification of photopolymerizable gelatin-methcrylate hrdrogels influences endothelial differentiation of human mesenchymal stem cells[J]. Tissue Eng. Regen. Med.,2018,12(1):2099-2111. [14] BILLIET T,GEVAERT E,DE S T,et al. The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability[J]. Biomaterials,2014,35(1):49-62. [15] YIN J,YAN M,WANG Y,et al. 3D bioprinting of low concentration cell-laden gelatin methacrylate (GelMA) bioinks with two-step crosslinking strategy[J]. ACS Appl. Mater. Interfaces,2018,10(8):6849-6857. [16] GUISEPPE M D,LAW N,WEBB B,et al. Mechanical behaviour of alginate-gelatin hydrogels for 3D bioprinting[J]. Journal of the Mechanical Behavior of Biomedical Materials,2017,79:150-157. [17] 金乐,熊卓,刘利,等. 基于活塞挤出的组织工程支架低温沉积制造工艺[J]. 清华大学学报,2009(5):652-655. JIN Le,XIONG Zhuo,LIU Li,et al. Low temperature deposition manufacturing process of tissue engineering scaffold based on piston extrusion[J]. Journal of Tsinghua University,2009(5):652-655. [18] COIMBRA P,FERNANDES D,FERREIRA P,et al. Solubility of Irgacure®;2959 photoinitiator in supercritical carbon dioxide:Experimental determination and correlation[J]. Journal of Supercritical Fluids,2008,45(3):272-281. [19] WANG Z,TIAN Z,MENARD F,et al. Comparative study of gelatin methacrylate hydrogels from different sources for biofabrication applications[J]. Biofabrication,2017,9(4):044101. [20] FIDKOWSKI C. Endothelialized microvasculature based on a biodegradable elastomer[J]. Tissue Eng,2005,11:302-309. [21] ANNABI N,NICHOL J W,ZHONG X,et al. Controlling the porosity and microarchitecture of hydrogels for tissue engineering[J]. Tissue Engineering Part B:Reviews,2010,16(4):371-383. [22] MANDAL B B,KUNDU S C. Cell proliferation and migration in silk fibroin 3D scaffolds[J]. Biomaterials,2009,30(15):2956-2965 |