Journal of Mechanical Engineering ›› 2017, Vol. 53 ›› Issue (16): 20-31.doi: 10.3901/JME.2017.16.020
Previous Articles Next Articles
HU Xiaosong1,2, TANG Xiaolin1,2
Received:
2016-08-25
Revised:
2017-07-15
Online:
2017-08-20
Published:
2017-08-20
CLC Number:
HU Xiaosong, TANG Xiaolin. Review of Modeling Techniques for Lithium-ion Traction Batteries in Electric Vehicles[J]. Journal of Mechanical Engineering, 2017, 53(16): 20-31.
[1] CHU S, MAJUMDAR A. Opportunities and challenges for a sustainable energy future[J]. Nature, 2012, 488(7411):294-303. [2] ZOU Y, HU X, MA H, et al. Combined state of charge and state of health estimation over lithium-ion battery cell cycle lifespan for electric vehicles[J]. Journal of Power Sources, 2015, 273:793-803. [3] CHATURVEDI N, KLEIN R, CHRISTENSEN J, et al. Algorithms for advanced battery-management systesms[J]. IEEE Control Systems Magazine, 2010, 30(3):49-68. [4] MOURA S J. Adaptive estimation and control of models for battery electrochemistry[R]. Presentation at Chalmers University of Technology, 2013. [5] RAHIMI-EICHI H, OJHA U, BARONTI F, et al. Battery management system:An overview of its application in the smart grid and electric vehicles[J]. IEEE Industrial Electronics Magazine, 2013, 7(2):4-16. [6] LU L, HAN X, LI J, et al. A review on the key issues for lithium-ion battery management in electric vehicles[J]. Journal of Power Sources, 2013, 226:272-288. [7] LAWDER M T, SUTHAR B, NORTHROP P W C, et al. Battery energy storage system (BESS) and battery management system (BMS) for grid-scale applications[J]. Proceedings of the IEEE, 2014, 102(6):1014-1030. [8] "锂题材" 缘何如此火爆.[2016-12-12]. http://stock.hexun.com/2010/ltc/. Why are Li-ion batteries so hot.[2016-12-12]. http://stock.hexun.com/2010/ltc/. [9] What is the basic construction of a lithium polymer (LiPo) battery?[2017-07-27]. https://www.quora.com/What-isthe-basic-construction-of-a-lithium-polymer-LiPo-battery. [10] 胡晓松. 电动车辆锂离子电池模型辨识、优化与状态估计[D]. 北京:北京理工大学, 2012. HU Xiaosong. Lithium-ion battery model identification, optimization, and state estimation for electric vehicles[D]. Beijing:Beijing Institute of Technology, 2012. [11] LUKIC S M, CAO J, BANSAL R C, et al. Energy storage systems for automotive applications[J]. IEEE Transactions on Industrial Electronics, 2008, 55(6):2258-2267. [12] MI C, MASRUR M A, GAO D W. Hybrid electric vehicles-principles and applications with practical perspectives[M]. West Sussex:John Wiley & Sons, 2011. [13] ETACHERI V, MAROM R, ELAZARI R, et al. Challenges in the development of advanced Li-ion batteries:A review[J]. Energy & Environmental Science, 2011, 4(9):3243-3262. [14] NAGAURA T, TOZAWA K. Lithium ion rechargeable battery[J]. Progress in Batteries & Solar Cells, 1990, 9:209-217. [15] TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861):359-367. [16] ALAMGIR M, SASTRY A M. Efficient batteries for transportation applications[R]. SAE, 08CNVG-0036, 2008. [17] The Boston Consulting Group. Batteries for electric cars-challenges, opportunities, and the outlook to 2020[R]. Boston:BCG, 2010. [18] ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451(7179):652-657. [19] TARASCON J M. Key challenges in future Li-battery research[J]. Philosophical Transactions of the Royal Society of London A:Mathematical, Physical and Engineering Sciences, 2010, 368(1923):3227-3241. [20] AFFANNI A, BELLINI A, FRANCESCHINI G, et al. Battery choice and management for new-generation electric vehicles[J]. IEEE Transactions on Industrial Electronics, 2005, 52(5):1343-1349. [21] ALEKSANDROVA E. Lithium-ion batteries for electric cars:opportunities and challenges[R]. Presentation from Honda R&D Europe (Deutschland) GmbH, 2010. [22] SEAMAN A, DAO T S, MCPHEE J. A survey of mathematics-based equivalent-circuit and electrochemical battery models for hybrid and electric vehicle simulation[J]. Journal of Power Sources, 2014, 256:410-423. [23] JOHNSON V H. Battery performance models in ADVISOR[J]. Journal of Power Sources, 2002, 110(2):321-329. [24] WANG J, CHEN Q, CAO B. Support vector machine based battery model for electric vehicles[J]. Energy Conversion and Management, 2006, 47(7):858-864. [25] PLETT G L. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs, Part 2. Modeling and identification[J]. Journal of Power Sources, 2004, 134(2):262-276. [26] HU X, LI S, PENG H. A comparative study of equivalent circuit models for Li-ion batteries[J]. Journal of Power Sources, 2012, 198:359-367. [27] XU J, MI C C, CAO B, et al. A new method to estimate the state of charge of lithium-ion batteries based on the battery impedance model[J]. Journal of power sources, 2013, 233:277-284. [28] WANG B, LI S E, PENG H, et al. Fractional-order modeling and parameter identification for lithium-ion batteries[J]. Journal of Power Sources, 2015, 293:151-161. [29] ZOU Y, LI S E, SHAO B, et al. State-space model with non-integer order derivatives for lithium-ion battery[J]. Applied Energy, 2016, 161:330-336. [30] COLEMAN M, HURLEY W G, LEE C K. An improved battery characterization method using a two-pulse load test[J]. IEEE Transactions on Energy Conversion, 2008, 23(2):708-713. [31] ANDRE, D, MEILER M, STEINER K, et al. Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy. Ⅱ:Modelling[J]. Journal of Power Sources, 2011, 196(12):5349-5356. [32] HU X, SUN F, ZOU Y. Comparison between two model-based algorithms for Li-ion battery SOC estimation in electric vehicles[J]. Simulation Modelling Practice and Theory, 2013, 34:1-11. [33] HU Y, YURKOVICH S, GUEZENNEC Y, et al. A technique for dynamic battery model identification in automotive applications using linear parameter varying structures[J]. Control Engineering Practice, 2009, 17(10):1190-1201. [34] HU X, LI S, PENG H, SUN F. Robustness analysis of state-of-charge estimation methods for two types of Li-ion batteries[J]. Journal of Power Sources, 2012, 217:209-219. [35] HU X, SUN F, ZOU Y. Online model identification of lithium-ion battery for electric vehicles[J]. Journal of Central South University of Technology, 2011, 18:1525-1531. [36] HU X, SUN F, CHENG X. Recursive calibration for a lithium iron phosphate battery for electric vehicles using extended Kalman filtering[J]. Journal of Zhejiang University Science A, 2011, 12(11):818-825. [37] RAHIMI-EICHI H, BARONTI F, CHOW M W. Online adaptive parameter identification and state-of-charge coestimation for lithium-polymer battery cells[J]. IEEE Transactions on Industrial Electronics, 2014, 61(4):2053-2061. [38] DOYLE M, FULLER T, NEWMAN J. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell[J]. Journal of The Electrochemical Society, 1993, 140(6):1526-1533. [39] ZOU C, MANZIE C, NESIC D. A framework for simplification of PDE-based lithium-ion battery models[J]. IEEE Transactions on Control Systems Technology, 2016, 24(5):1594-1609. [40] FORTRAN Programs for the simulation of elestrochemical systems.[2016-06-21]. http://www.cchem.berkeley.edu/jsngrp/fortran.html. [41] SANTHANAGOPALAN S, GUO Q, RAMADASS P, et al. Review of models for predicting the cycling performance of lithium ion batteries[J]. Journal of Power Sources, 2006, 156(2):620-628. [42] SMITH K A, RAHN C D, WANG C. Control oriented 1D electrochemical model of lithium ion battery[J]. Energy Conversion and Management, 2007, 48(9):2565-2578. [43] SUBRAMANIAN V R, DIWAKAR V D, TAPRIYAL D. Efficient macro-micro scale coupled modeling of batteries[J]. Journal of The Electrochemical Society, 2005, 152(10):A2002-A2008. [44] FORMAN J C, BASHASH S, STEIN J L, et al. Reduction of an electrochemistry-based Li-ion battery model via quasi-linearization and Pade approximation[J]. Journal of The Electrochemical Society, 2011, 158(2):A93-A101. [45] SMITH K, WANG C. Solid-state diffusion limitations on pulse operation of a lithium ion cell for hybrid electric vehicles[J]. Journal of Power Sources, 2006, 161(1):628-639. [46] CAI L, WHITE R E. An efficient electrochemical-thermal model for a lithium-ion cell by using the proper orthogonal decomposition method[J]. Journal of the Electrochemical Society, 2010, 157(11):A1188-A1195. [47] MOURA S J, CHATURVEDI N A, KRSTIC M. PDE estimation techniques for advanced battery management systems-Part I:SOC estimation[C]//Proceedings of American Control Conference (ACC). Montreal:IEEE, 2012, 559-565. [48] PEREZ H E, HU X, MOURA S. Optimal charging of batteries via a single particle model with electrolyte and thermal dynamics[C/CD]//The American Control Conference, 2017. [49] RAHIMIAN S K, RAYMAN S, WHITE R E. Extension of physics-based single particle model for higher charge-discharge rates[J]. Journal of Power Sources, 2013, 224:180-194. [50] LUO W, LYU C, WANG L, et al. A new extension of physics-based single particle model for higher charge-discharge rates[J]. Journal of Power Sources, 2013, 241:295-310. [51] RAHIMIAN S K, RAYMAN S, WHITE R E. Comparison of single particle and equivalent circuit analog models for a lithium-ion cell[J]. Journal of Power Sources, 2011(20), 196:8450-8462. [52] HAN X, OUYANG M, LU L, et al. Simplification of physics-based electrochemical model for lithium ion battery on electric vehicle Part I:Diffusion simplification and single particle model[J]. Journal of Power Sources, 2015, 278:802-813. [53] RAHN C D, WANG C. Battery systems engineering[M]. New Jersey:John Wiley & Sons, 2013. [54] BERNARDI D, PAWLIKOWSKI E, NEWMAN J. General energy balance for battery systems[J]. Journal of the Electrochemical Society, 1985, 132(1):5-12. [55] THOMAS K E, NEWMAN J. Heats of mixing and of entropy in porous insertion electrodes[J]. Journal of Power Sources, 2003, 119-121(1):844-849. [56] PALS C R, NEWMAN J. Thermal modeling of the lithium/polymer battery:I. discharge behavior of a single cell[J]. Journal of the Electrochemical Society, 1995, 142(10):3274-3281. [57] PALS C R, NEWMAN J. Thermal modeling of the lithium/polymer battery:Ⅱ. temperature profiles in a cell stack[J]. Journal of The Electrochemical Society, 1995, 142(10):3282-3288. [58] GOLI P, LEGEDZA S, DHAR A, et al. Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries[J]. Journal of Power Sources, 2014, 248:37-43. [59] WANG Q, SHAFFER C E, SINHA P K. Controlling factors of cell design on large-format li-ion battery safety during nail penetration[J]. Frontiers in Energy Research, 2015, 3:35. [60] RICHARDSON R R, ZHAO S, HOWEY. On-board monitoring of 2-D spatially-resolved temperatures in cylindrical lithium-ion batteries:Part I. Low-order thermal modeling[J]. Journal of Power Sources, 2016, 326:377-388. [61] MURATORI M, MA N, CANOVA M, et al. A model order reduction method for the temperature estimation in a cylindrical li-ion battery cell[C]//Proceedings of the ASME Dynamic Systems and Control Conference. Boston:ASME, 2010, 633-640. [62] MURATORI M, CANOVA M, GUEZENNEC Y. A spatially-reduced dynamic model for the thermal characterisation of li-ion battery cells[J]. International Journal of Vehicle Design, 2012, 58(2-4):134-158. [63] KIM Y, SIEGEL J B, STEFANOPOULOU A G. A computationally efficient thermal model of cylindrical battery cells for the estimation of radially distributed temperatures[C]//Proceedings of the American Control Conference. Washington, DC:IEEE, 2013, 698-703. [64] KIM Y. Power capability estimation accounting for thermal and electrical constraints of lithium-ion batteries[D]. Ann Arbor:University of Michigan, Ann Arbor, USA, 2014. [65] LIN X, PEREZ H E, MOHAN S, et al. A lumpedparameter electro-thermal model for cylindrical batteries[J]. Journal of Power Sources, 2014, 257:1-11. [66] FORGEZ C, DO D V, FRIEDRICH G, et al. Thermal modeling of a cylindrical LiFePO4/graphite lithium-ion battery[J]. Journal of Power Sources, 2010, 195(9):2961-2968. [67] WANG C, SRINIVASAN V. Computational battery dynamics (CBD)-electrochemical/thermal coupled modeling and multi-scale modeling[J]. Journal of Power Sources, 2002, 110(2):364-376. [68] GAO L, LIU S, DOUGAL R A. Dynamic lithium-ion battery model for system simulation[J]. IEEE Transactions on Components and Packaging Technologies, 2002, 25(3):495-505. [69] PARK C W, JAURA A K. Dynamic thermal model of li-ion battery for predictive behavior in hybrid and fuel cell vehicles[J]. SAE Transactions, Journal of Engines, 2003, 112(3):1835-1842. [70] GU W, WANG C. Thermal-electrochemical modeling of battery systems[J]. Journal of The Electrochemical Society, 2000, 147(8):2910-2922. [71] KUMARESAN K, SIKHA G, WHITE R E. Thermal model for a li-ion cell[J]. Journal of The Electrochemical Society, 2008,155(2):A164-A171. [72] FANG W, KWON O J, WANG C. Electrochemicalthermal modeling of automotive Li-ion batteries and experimental validation using a three-electrode cell[J]. International Journal of Energy Research, 2010, 34:107-115. [73] CHRISTENSEN J, NEWMAN J. Effect of anode film resistance on the charge/discharge capacity of a lithium-ion battery[J]. Journal of the Electrochemical Society, 2003, 150(11):A1416-1420. [74] CHRISTENSEN J, NEWMAN J. A mathematical model for the lithium-ion negative electrode solid electrolyte interphase[J]. Journal of the Electrochemical Society, 2004, 151(11):A1977-1988. [75] SAFARI M, DELACOURT C. Simulation-based analysis of aging phenomena in a commercial graphite/LiFePO4 cell[J]. Journal of the Electrochemical Society, 2011, 158(12):A1436-1447. [76] RANDALL A V, PERKINS R D, ZHANG X, et al. Controls oriented reduced order modeling of solid-electrolyte interphase layer growth[J]. Journal of Power Sources, 2012, 209:282-288. [77] PERKINS R D, RANDALL A V, ZHANG X, et al. Controls oriented reduced order modeling of lithium deposition on overcharge[J]. Journal of Power Sources, 2012, 209:318-325. [78] WANG J, LIU P, HICKS-GARNER J, et al. Cycle-life model for graphite-LiFePO4 cells[J]. Journal of Power Sources, 2011,196(8):3942-3948. [79] SAFARI M, MORCRETTE M, TEYSSOT A, et al. Life-prediction methods for lithium-ion batteries derived from a fatigue approach I. Introduction:capacity-loss prediction based on damage accumulation[J]. Journal of the Electrochemical Society, 2010, 157(6):A713-A720. [80] CORDOBA-ARENAS A, ONORI S, GUEZENNEC Y, et al. Capacity and power fade cycle-life model for plug-in hybrid electric vehicle lithium-ion battery cells containing blended spinel and layered-oxide positive electrodes[J]. Journal of Power Sources, 2015, 278:473-483. [81] CORDOBA-ARENAS A, ONORI S, RIZZONI G. A control-oriented lithium-ion battery pack model for plug-in hybrid electric vehicle cycle-life studies and system design with consideration of health management[J]. Journal of Power Sources, 2015, 279:791-808. [82] REZVANI M, ABUALI M, LEE S, et al. A comparative analysis of techniques for electric vehicle battery prognostics and health management (PHM)[R]. SAE, 2011-01-2247, 2011. [83] HE W, WILLIARD N, OSTERMAN M, et al. Prognostics of lithium-ion batteries based on Dempster-Shafer theory and the Bayesian Monte Carlo method[J]. Journal of Power Sources, 2011, 196(23):10314-10321. [84] ANDRE D, NUHIC A, SOCZKA-GUTH T, et al. Comparative study of a structured neural network and an extended Kalman filter for state of health determination of lithium-ion batteries in hybrid electric vehicles[J]. Engineering Applications of Artificial Intelligence, 2013, 26(3):951-961. [85] LIN H T, LIANG T J, CHEN S M. Estimation of battery State of Health using probabilistic neural network[J]. IEEE Transactions on Industrial Informatics, 2013, 9(2):679-685. [86] SALKIND A J, FENNIE C, SINGH P, et al. Determination of state-of-charge and state-of-health of batteries by fuzzy logic methodology[J]. Journal of Power Sources, 1999, 80(1-2):293-300. [87] NUHIC A, TERZIMEHIC T, SOCZKA-GUTH T, et al. Health diagnosis and remaining useful life prognostics of lithium-ion batteries using data-driven methods[J]. Journal of Power Sources, 2013, 239:680-688. [88] HU X, JIANG J, CAO D, et al. Battery health prognosis for electric vehicles using sample entropy and sparse Bayesian predictive modeling[J]. IEEE Transactions on Industrial Electronics, 2016, 63(4):2645-2656. |
[1] | HAN Jianchao, ZHANG Mengfei, WANG Bin, GUO Shenghui, JIA Yi, WANG Tao. Analysis of Electroplastic Constitutive Equation and Multi-physical Field Coupling of Titanium Alloy [J]. Journal of Mechanical Engineering, 2024, 60(9): 421-433. |
[2] | XIE Chenyang, HUANG Jiao, XIAO Guangming, ZHANG Xianjie, WANG Junbiao, LI Yujun. A Algorithm to Generate Representative Volume Elements for Unidirectional Composites Considering Fiber Misalignment [J]. Journal of Mechanical Engineering, 2024, 60(8): 186-195. |
[3] | ZHANG Jun, WU Chengyang, FANG Hanliang, SUN Zaichao, WANG Kailong, TANG Tengfei. Investigation on Driving Characteristics of a Z4 Redundantly Actuated Parallel Manipulator [J]. Journal of Mechanical Engineering, 2024, 60(7): 66-78. |
[4] | SHANG Deyong, HUANG Xinyi, HUANG Yunshan, ZHANG Tianyou. Research on Rigid-flexible Coupling Dynamics of Delta Parallel Robot Based on Kane Equation [J]. Journal of Mechanical Engineering, 2024, 60(7): 124-133. |
[5] | ZHENG Yang, ZHAO Zihao, LIU Wei, YU Zhengzhe, NIU Wei, LEI Yiwen, SUN Ronglu. Research Progress in High-performance Mg Alloys Prepared by Additive Manufacturing [J]. Journal of Mechanical Engineering, 2024, 60(7): 385-400. |
[6] | DAI Minghua, HU Ping, YING Liang, CHEN Shuai, WANG Yongqing, HAN Xiaoqiang. Modeling Study on Failure Behavior of Quenched Hot Forming Boron Steel Considering Damage [J]. Journal of Mechanical Engineering, 2024, 60(6): 218-226. |
[7] | LIU Daxin, WANG Ke, LIU Zhenyu, XU Jiatong, TAN Jianrong. Research on Digital Twin Modeling Method for Robotic Assembly Cell Based on Data Fusion and Knowledge Reasoning [J]. Journal of Mechanical Engineering, 2024, 60(5): 36-50. |
[8] | HE Dongping, JIANG Li, XU Huidong, LIU Yuanming, WANG Tao. Horizontal Nonlinear Vibration of Mill Work Roll and Intelligent Liner Vibration Absorption [J]. Journal of Mechanical Engineering, 2024, 60(20): 108-119. |
[9] | ZONG Chaoyong, LI Qingye, PENG Yue, YANG Guanghong, ZHOU Weihao, XIAO Jian, SONG Xueguan. Dynamic Modeling and Analysis of the Main Steam Relief Isolation Valve (MSRIV) Used in Nuclear Power Plants [J]. Journal of Mechanical Engineering, 2024, 60(20): 339-350. |
[10] | QIAN Ping, LIU Xinyu, CHEN Wenhua, WANG Zhe, GUO Mingda. Storage Reliability Modeling of Polyurethane Seals for Electrical Connectors [J]. Journal of Mechanical Engineering, 2024, 60(20): 361-371. |
[11] | WANG Xiaoyu, WEI Zhaocheng, WANG Xueqin, WANG Dong. Geometric Modeling of Residual Materials in Impeller Milling with Double Row Slotting [J]. Journal of Mechanical Engineering, 2024, 60(19): 310-317. |
[12] | LEI Fei, LIU Siyu, LIAO Junbei, GUO Zhao, WANG Zhirui, YAN Tong, DANG Ruina, SU Bo. Static Modeling and Analysis of Cable-driven Continuum Robots under Large Load [J]. Journal of Mechanical Engineering, 2024, 60(15): 28-37. |
[13] | WANG Min, SUN Jingjian, DING Jiheng, SUN Yi, PENG Yan, PU Huayan, LUO Jun, XIE Shaorong. Kinematics Analysis and Dynamics Modeling of Bionic Water Snake Robot Based on D-H Parameters and Lagrange Equations [J]. Journal of Mechanical Engineering, 2024, 60(15): 134-148. |
[14] | YU Jinxu, YAN Jianhua, XIAO Junming, LI Yongquan, XIE Ping, ZHANG Lijie. Establishment and Verification of Finger Joint Kinematic Model Based on the Combination of Medicine and Engineering [J]. Journal of Mechanical Engineering, 2024, 60(15): 149-159. |
[15] | HE Yuhao, XIE Fugui, XIE Zenghui, WANG Jindou, LIU Xinjun. Parameters and Stiffness Optimization of a Five-axis Parallel Machining Unit [J]. Journal of Mechanical Engineering, 2024, 60(13): 308-315. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||