[1] YANG B,LI Q,CHEN L,et al. Bearing fault diagnosis based on multilayer domain adaptation[J]. Shock and Vibration,2020,2020:1-11. [2] AL J B,FNAIECH N,SAIDI L,et al. Application of empirical mode decomposition and artificial neural network for automatic bearing fault diagnosis based on vibration signals[J]. Applied Acoustics,2015,89:16-27. [3] HANG J,ZHANG J,CHENG M. Application of multi-class fuzzy support vector machine classifier for fault diagnosis of wind turbine[J]. Fuzzy Sets Syst.,2016,297:128-140. [4] 孙卫祥,陈进,吴立伟,等. 基于PCA与决策树的转子故障诊断[J]. 振动与冲击,2007,26(3):72-74,159. SUN Weixiang,CHEN Jin,WU Liwei,et al. Rotor fault diagnosis based on PCA and decision tree[J]. Journal of Vibration and Shock,2007,26(3):72-74,159. [5] LEI Y,ZUO M. Gear crack level identification based on weighted K nearest neighbor classification algorithm[J]. Mechanical Systems and Signal Processing,2009,23(5):1535-1547. [6] 雷亚国,贾峰,周昕,等. 基于深度学习理论的机械装备大数据健康监测方法[J]. 机械工程学报,2015,51(21):49-56. LEI Yaguo,JIA Feng,ZHOU Xin,et al. A deep learning-based method for machinery health monitoring with big data[J]. Journal of Machanical Engineering,2015,51(21):49-56. [7] 郑逸涵. 针对小样本数据的图神经网络模型研究[D]. 广州:华南理工大学,2020. ZHENG Yihan. Research on graph neural networks for small-scale datasets[D]. Guangzhou:South China University of Technology,2020. [8] LIU Z H,LU B L,WEI H L,et al. Deep adversarial domain adaptation model for bearing fault diagnosis[J]. IEEE Transactions on Systems,Man,and Cybernetics,2020,99:1-10. [9] 李栋,刘树林,孙欣. 针对不连续时变样本空间的连续学习故障诊断方法[J]. 机械工程学报,2021,57(1):157-167. LI Dong,LIU Shulin,SUN Xin. A continual learning fault diagnosis method for discontinuous time-varying sample space[J]. Journal of Machanical Engineering,2021,57(1):157-167. [10] RAZAVI-FAI R,SAIF M,PALADE V,et al. Adaptive incremental ensemble of extreme learning machines for fault diagnosis in induction motors[C]//2017 International Joint Conference on Neural Networks (IJCNN). IEEE,2017. [11] CHEN C,LIU Z. Broad learning system:An effective and efficient incremental learning system without the need for deep architecture[J]. IEEE Transactions on Neural Networks & Learning Systems,2018,29(99):10-24. [12] PU X,LI C. Online semi-supervised broad learning system for industrial fault diagnosis[J]. IEEE Transactions on Industrial Informatics,2021,99:1. [13] ZHANG H,REN Z,XIN S,et al. A scale-adaptive positive selection algorithm based on B-cell immune mechanisms for anomaly detection[J]. Engineering Applications of Artificial Intelligence,2020,94(4):1-13. [14] LI D,LIU S,GAO F,et al. Continual learning classification method with new labeled data based on the artificial immune system[J]. Applied Soft Computing,2020,94:106423. [15] LI D,LIU S,ZHANG H. A method of anomaly detection and fault diagnosis with online adaptive learning under small training samples[J]. Pattern Recognit.,2017,64:374-385. [16] 李栋,孙欣,刘树林. 基于变径边界样本界面检测器的异常度检测方法[J]. 机械工程学报,2020,56(10):57-63. LI Dong,SUN Xin,LIU Shulin. equipment abnormal degree detection approach based on interface detector with variable-sized boundary samples[J]. Journal of Machanical Engineering,2020,56(10):57-63. [17] 松佩拉克. 免疫学概览[M]. 4版. 北京:北京大学医学出版社,2016. LAUREN Sompayrac. How the immune system works[M]. 4th ed. Beijing:Peking University Medical Press,2016. [18] 莫宏伟,左兴权. 人工免疫系统[M]. 北京:科学出版,2009. MO Hongwei,ZUO Xingquan. Artificial immune system[M]. Beijing:Science Press,2009. [19] WATKINS A,TIMMIS J,BOGGESS L. Artificial immune recognition system (AIRS):An immune-inspired supervised learning algorithm[J]. Genetic Programming and Evolvable Machines,2004,5(3):291-317. [20] 李航. 统计学习方法[M]. 2版. 北京:清华大学出版社,2019. LI Hang. Statistical learning methods[M]. 2nd ed. Beijing:Tsinghua University Press,2019. [21] KOTSIANTIS S,ZAHARAKIS I,PINTELAS P. Machine learning:A review of classification andcombining techniques[J]. Artificial Intelligence Review,2007,26:159-190. [22] 杨洪柏,聂昂,张江安,等. 基于原始振动信号的往复压缩机卷积神经网络故障诊断[J]. 机械设计与制造工程,2018,47(9):67-70. YANG Hongbai,NIE Ang,ZHANG Jiangan,et al. The fault diagnosis of reciprocatingcompressor based on convolutional neural network with raw vibration signal[J]. Machine Design and Manufacturing Engineering,2018,47(9):67-70. |