[1] YU Yuanyu, PUN S, MAK P, et al. Design of a collapse-mode CMUT with an embossed membrane for improving output pressure[J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2016, 63(6):854-863. [2] SAUTTO M, SAVOIA A, QUAGLIA F, et al. A comparative analysis of CMUT receiving architectures for the design optimization of integrated transceiver front ends[J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2017, 64(5):826-838. [3] RAMADAN1 K, SAMEOTO D, EVOY S. A review of piezoelectric polymers as functional materials for electromechanical transducers[J]. Smart Materials and Structures, 2014, 23(3):033001. [4] WANG D, FILOUX E, LEVASSORT F, et al. Fabrication and characterization of annular-array, high-frequency, ultrasonic transducers based on PZT thick film[J]. Sensors and Actuators A-Physical, 2014, 216:207-213. [5] CHOE J, ORALKAN O, NIKOOZADEH A, et al. Volumetric real-time imaging using a CMUT ring array[J]. Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2012, 59(6):1201-1211. [6] MATRONE G, SAVOIA A, TERENZI M, et al. A volumetric CMUT-based ultrasound imaging system simulator with integrated reception and μ-beamforming electronics models[J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2014, 61(5):792-804. [7] ZHANG Rui, ZHANG Wendong, HE Changde, et al. Underwater imaging using a 1x16 CMUT linear array[J]. Sensors, 2016, 16(3):312. [8] LIM J, TEKES C, DEGERTEKIN F, et al. Towards a reduced-wire interface for CMUT-based intravascular ultrasound imaging systems[J]. IEEE Transactions on Biomedical Circuits and Systems, 2017, 11(2):400-410. [9] ZHAO Yihe, LU Dejiang, ZHAO Libo, et al. Capacitive micromachined ultrasonic transducers for biochemical detection with flexible high sensitivity[C]//Proceedings IEEE Micro Electro Mechanical Systems, JAN 21-25, 2018, Belfast, North Ireland, IEEE, 2018:924-927. [10] PARK K, LEE H, KUPNIK M, et al. Fabrication of capacitive micromachined ultrasonic transducers via local oxidation and direct wafer bonding[J]. Journal of Microelectromechanical Systems, 2011, 20(1):95-103. [11] TALEBIAN S, REZAZADEH G, FATHALILOU M, et al. Effect of temperature on pull-in voltage and natural frequency of an electrostatically actuated microplate[J]. Mechatronics, 2010, 20(6):666-673. [12] VOGL G, NAYFEH A. A reduced-order model for electrically actuated clamped circular plates[J]. Journal of Micromechanics and Microengineering, 2005, 15(4):684-690. [13] ZHAO Xiaopeng, ABDEL-RAHMAN E, NAYFEH A. A reduced-order model for electrically actuated microplates[J]. Journal of Micromechanics and Microengineering, 2004, 14(7):900-906. [14] MOHAMMADI V, ANSARI R, SHOJAEI M F, et al. Size-dependent dynamic pull-in instability of hydrostatically and electrostatically actuated circular microplates[J]. Nonlinear Dynamics, 2013, 73:1515-1526. [15] HU Kaiming, ZHANG Wenming, YAN Han, et al. Nonlinear pull-in instability of suspended graphene-based sensors[J]. Europhysics Letters, 2019, 125:20011. [16] SAGHIR S, YOUNIS M. An investigation of the static and dynamic behavior of electrically actuated rectangular microplates[J]. International Journal of Non-Linear Mechanics, 2016, 85:81-93. [17] PORFIRI M. Vibrations of parallel arrays of electrostatically actuated microplates[J]. Journal of Sound and Vibration, 2008, 315(4):1071-1085. [18] LI Zhikang, ZHAO Libo, YE Zhiying, et al. Resonant frequency analysis on an electrostatically actuated microplate under uniform hydrostatic pressure[J]. Journal of Physics D-Applied Physics, 2013, 46(19):195108. [19] ZHAO Libo, JIANG Zhuangde, LI Zhikang, et al. "Modeling of electrostatically actuated microplates", micro electro mechanical systems[M]. Singapore:Springer, 2018. [20] ENGHOLM M, PEDERSEN T, THOMSEN E. Modeling of plates with multiple anisotropic layers and residual stress[J]. Sensors and Actuators A Physical, 2016, 240:70-79. [21] CERTON D, TESTON F, PATAT F. A finite difference model for CMUT devices[J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2005, 52(12):2199-2210. [22] VENTSEL E, KRAUTHAMMER T. Thin Plates and shells:Theory, analysis, and applications[M]. New York:Marcel Dekker, Inc., 2001. [23] LADABAUM I, JIN X, SOH H, et al. Surface micromachined capacitive ultrasonic transducers[J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 1998, 45(3):678-689. [24] LI Zhikang, ZHAO Libo, JIANG Zhuangde, et al. An improved method for the mechanical behavior analysis of electrostatically actuated microplates under uniform hydrostatic pressure[J]. Journal of Microelectromechanical Systems, 2015, 24(2):474-485. [25] SOEDEL W. Vibrations of shells and plates[M]. New York:Marcel Dekker Inc., 1981. [26] ZHAO Libo, LI Jie, LI Zhikang, et al. Fabrication of capacitive micromachined ultrasonic transducers with low-temperature direct wafer-bonding technology[J]. Sensors and Actuators A-Physical, 2017, 264:63-75. [27] HOPCROFT M A, NIX W D AND KENNY T W, What is the Young's modulus of silicon?[J]. Journal of Microelectromechanical Systems, 2010, 19:229-238. |