Journal of Mechanical Engineering ›› 2024, Vol. 60 ›› Issue (22): 385-402.doi: 10.3901/JME.2024.22.385
Previous Articles Next Articles
WAN Buyan1, PENG Fenfei1,2, JIN Yongping1, PENG Youduo1, LIU Deshun1
Received:
2024-02-06
Revised:
2024-07-26
Online:
2024-11-20
Published:
2025-01-02
About author:
10.3901/JME.2024.22.385
CLC Number:
WAN Buyan, PENG Fenfei, JIN Yongping, PENG Youduo, LIU Deshun. Drilling Technology Status and Development Trends of Deep-sea Seafloor Drill[J]. Journal of Mechanical Engineering, 2024, 60(22): 385-402.
[1] ZHONG H. Exploitation and utilization of marine resources and protection of marine ecology[C]// International Conference on Environment and Ocean Engineering,June7-9,2019,Xiamen,IOP Conference Series:Earth and Environmental Science,2019,369(1):012009. [2] MAESTRO-GONZÁLEZ A. The future of mining:The exploitation of marine geological resources as global commons[J]. Security in the Global Commons and Beyond,2021:51-68. [3] 邹丽,孙佳昭,孙哲,等. 我国深海矿产资源开发核心技术研究现状与展望[J]. 哈尔滨工程大学学报,2023,44(5):708-716. ZOU Li,SUN Jiazhao,SUN Zhe,et al. Deep-sea mining core technology in China:Current situation and prospects[J]. Journal of Harbin engineering University,2023,44(5):708-716. [4] REN Ziqiang,ZHOU Feng,ZHU Hai,et al. Analysis and research on mobile drilling rig for deep seabed shallow strata[J]. Marine Technology Society Journal,2021,55(2):81-93. [5] 金永平,万步炎,刘德顺. 深海海底钻机收放装置关键零部件可靠性分析与试验[J]. 机械工程学报,2019,55(8):183-191. JIN Yongping,WAN Buyan,LIU Deshun. Reliability analysis and experimental for key component of launch and recovery equipment of seafloor drill[J]. Journal of Mechanical Engineering,2019,55(8):183-191. [6] 刘德顺,金永平,万步炎,等. 深海矿产资源岩芯探测取样技术与装备发展历程与趋势[J]. 中国机械工程,2014,25(23):3255-3265. LIU Deshun,JIN Yongping,WAN Buyan,et al. Review and development trends of deep-sea mineral resource core sampling technology and equipment[J]. China Mechanical Engineering,2014,25(23):3255-3265. [7] 刘协鲁,陈云龙,张志伟,等. 海底多金属硫化物勘探取样技术与装备研究[J]. 地质装备,2019,20(5):28-30. LIU Xielu,CHEN Yunlong,ZHANG Zhiwei,et al. Research on sampling technology and equipment for submarine polymetallic sulfide exploration[J]. Equipment for Geotechnical Engineering,2019,20(5):28-30. [8] 杨红刚,王定亚,陈才虎,等. 海底勘探装备技术研究[J]. 石油机械,2013,41(12):58-62. YANG Honggang,WANG Dingya,CHEN Caihu,et al. Research on seabed exploration equipment[J]. China Petroleum Machinery,2013,41(12):58-62. [9] 赵义,蔡家品,阮海龙,等. 大洋科学钻探船综述[J]. 地质装备,2019,20(3):11-14. ZHAO Yi,CAI Jiapin,RUAN Hailong,et al. Overview of ocean scientific drilling vessels[J]. Equipment for Geotechnical Engineering,2019,20(3):11-14. [10] 李福建,王志伟,李阳,等. 大洋钻探船深海钻探作业模式分析[J]. 海洋工程装备与技术,2018,5(5):320-326. LI Fujian,WANG Zhiwei,LI Yang,et al. Technical analysis of deep-sea drilling operation modes for ocean drilling ship[J]. Ocean Engineering Equipment and Technology,2018,5(5):320-326. [11] 张汉泉,陈奇,万步炎,等. 海底钻机的国内外研究现状与发展趋势[J]. 湖南科技大学学报(自然科学版),2016,31(1):1-7. ZHANG Hanquan,CHEN Qi,WAN Buyan,et al. Current research and development trends of seabed drill rig[J]. Journal of Hunan University of Science and Technology,2016,31(1):1-7. [12] 王敏生,黄辉. 海底钻机及其研究进展[J]. 石油机械,2013,41(5):105-110. WANG Minsheng,HUANG Hui. Seafloor drilling rig and its research progress[J]. China Petroleum Machinery,2013,41(5):105-110. [13] 贾向锋,李亚伟,赵涛. 大洋钻探船钻探系统装备现状及总体配置研究[J]. 船舶,2023,34(5):67-76. JIA Xiangfeng,LI Yawei,ZHAO Tao. State-of-the-art and overall configuration of drilling system equipment for ocean drilling vessels[J]. Ship &Boat,2023,34(5):67-76. [14] FREUDENTHAL T,WEFER G. Shallow drilling in the deep sea:A new technological perspective for the next phase of scientific ocean drilling[C]//IODP New Ventures in Exploring Scientific Targets (INVEST) Conference, September 22-25,2009,Bremen,IODP,2009:1-6. [15] ISHIBASHI J,MIYOSHI Y,TANAKA K,et al. Pore fluid chemistry beneath active hydrothermal fields in the Mid-Okinawa Trough:Results of shallow drillings by BMS during TAIGA11 cruise[J]. Subseafloor Biosphere Linked to Hydrothermal Systems:TAIGA Concept,2015:535-560. [16] NAKAMURA K,SATO H,FRYER P,et al. Petrography and geochemistry of basement rocks drilled from Snail,Yamanaka,Archaean,and Pika Hydrothermal Vent Sites at the Southern Mariana Trough by benthic multi-coring system (BMS)[J]. Subseafloor Biosphere Linked to Hydrothermal Systems:TAIGA Concept,2015:507-533. [17] PHEASANT I,WILSON M,STEWART H A. British geological Survey remotely operated sea bed rockdrills and vibrocorers:New advances to meet the needs of the scientific community[C]// In:6th International Workshop on Marine Technology,September 15-17,2015,Cartagena,International Workshop on Marine Technology,2015,19-21. [18] EDMUNDS J,MACHIN J B,COWIE M. Development of the ROV-drill mk. 2 seabed push sampling,rotary coring and in-situ testing system[C]//Offshore Technology Conference,April 30-May 3,2012,Houston,Offshore Technology Conference,2012,OTC-23395-MS. [19] LUDVIGSEN M,AASLY K,ELLEFMO S,et al. ROV based drilling for deep sea mining exploration[C]//In OCEANS 2017-Aberdeen,June 19-22,2017,Aberdeen,IEEE,2017:1-6. [20] PAK S J,KIM H S. A case report on the sea-trial of the seabed drill system and its technical trend[J]. Economic and Environmental Geology,2016,49(6):479-490. [21] OCHI K,JACKSON E,HIRTZ H,et al. A new generation seafloor drill UNICORN-1[C]//OCEANS 2016 MTS/IEEE Monterey,September 19-23,2016,Monterey,IEEE,2016:1-9. [22] SOYLU S,HAMPTON P,CREES T,et al. Automation of CRD100 seafloor drill[C]//OCEANS 2016 MTS/IEEE Monterey,September 19-23,2016,Monterey,IEEE,2016:1-8. [23] DAVIES P J,WILLIAMSON M,FRAZER H,et al. The portable remotely operated drill[J]. The APPEA Journal,2000,40(1):522-530. [24] RYANG W H,KIM S P,HAHN J. Geoacoustic characteristics at the DH-2 long-core sediments in the Korean continental margin of the East Sea[C]//EGU General Assembly Conference Abstracts,April 12-17,2015,Vienna,2015:4524. [25] STEVENSON A,PHEASANT I,WILSON M,et al. British Geological Survey remotely operated sea bed rockdrills and Vibrocorers:New advances to meet the needs of the scientific community[C]//2014 AGU Fall Meeting,December 15-19,San Francisco,2014,AGU,2014. [26] FREUDENTHAL T. MeBo200-Entwicklung und Bau eines ferngesteuerten Bohrgerätes für Kernbohrungen am Meeresboden bis 200 m Bohrteufe,Schlussbericht[R]. Berichte aus dem MARUM und dem Fachbereich Geowissenschaften der Universität Bremen,2016,308:1-9. FREUDENTHAL T. MeBo200 development and construction of a remote controlled drilling rig for core drilling at the seabed up to 200 m deep,final report[R]. Reports from MARUM and the Department of Geosciences of the University of Bremen,2016,308:1-9. [27] RIEDEL M,FREUDENTHAL T,BIALAS J,et al. In-situ borehole temperature measurements confirm dynamics of the gas hydrate stability zone at the upper Danube Deep-Sea Fan,Black Sea[J]. Earth and Planetary Science Letters,2021,563:116869. [28] BOHRMANN G,AHRLICH F,BACHMANN K,et al. R/V METEOR cruise report M142,drilling gas hydrates in the Danube Deep-Sea Fan,Black Sea,Varna-Varna- Varna,04 November-22 November-09 December 2017[R]. MARUM-Zentrum für Marine Umweltwissenschaften,Fachbereich Geowissenschaften,Universitäauml;t Bremen,2018,320:1-121. [29] SPAGNOLI G,FREUDENTHAL T,STRASSER M,et al. Development and possible applications of Mebo200 for geotechnical investigations for the underwater mining[C]// Offshore Technology Conference,May,2014,Houston,OTC,2014:D021S027R006. [30] 万步炎,黄筱军. 深海浅地层岩芯取样钻机的研制[J]. 矿业研究与开发,2006,(S1):49-51,130. WAN Buyan,HUANG Xiaojun. Development of core sampling drill for deep seabed shallow strata[J]. Mining Research and Development,2006,(S1):49-51,130. [31] WAN B,ZHANG G,HUANG X. Research and development of seafloor shallow-hole multi-coring drill[C]//The Twentieth International Offshore and Polar Engineering Conference,June 20-25,2010,Beijing,OnePetro,2010,ISOPE-I-10-237. [32] 任玉刚,刘延俊,丁忠军,等. 基于深海运载器的小型岩芯取样钻机发展现状分析[J]. 海洋技术学报,2019,38(3):92-99. REN Yugang,LIU Yanjun,DING Zhongjun,et al. Analysis on the development status of small core sampling drill based on deep-sea vehicles[J]. Journal of Ocean Technology,2019,38(3):92-99. [33] 朱伟亚,万步炎,黄筱军,等. 深海底中深孔岩芯取样钻机的研制[J]. 中国工程机械学报,2016,14(1):38-43. ZHU Weiya,WAN Buyan,HUANG Xiaojun,et al. Research and development on medium-and deep-hole core-sampling drills for abyss seafloor[J]. Chinese Journal of Construction Machinery,2016,14(1):38-43. [34] 中国科学院海斗深渊前沿科技问题研究与攻关战略性先导科技专项研究团队. 开启深渊之门——海斗深渊前沿科技问题研究与攻关先导科技专项进展[J]. 中国科学院刊,2016,31(9):1105-1111,969. Team of strategic priority program of on frontier study on hadal science and technology institute of deep-sea science and engineering,Chinese Academy of Sciences. Open a door to the hadal trenches—Progress on frontier study on hadal science and technology[J]. Bulletin of Chinese Academy of Sciences,2016,31(9):1105-1111,969. [35] 刘健. 我国海洋钻机设备发展路径研究[J]. 中国工程科学,2020,22(6):40-48. LIU Jian. Development path of offshore drilling equipment in China[J]. Strategic Study of CAE,2020,22(6):40-48. [36] 刘峰,刘予,宋成兵,等. 中国深海大洋事业跨越发展的三十年[J]. 中国有色金属学报,2021,31(10):2613-2623. LIU Feng,LIU Yu,SONG Chengbing,et al. Three decades’ development of China in deep-sea field[J]. The Chinese Journal of Nonferrous Metals,2021,31(10):2613-2623. [37] 付亚荣. 可燃冰研究现状及商业化开采瓶颈[J]. 石油钻采工艺,2018,40(1):68-80. FU Yarong. Research status of combustible ice and the bottleneck of its commercial exploitation[J]. Oil Drilling & Production Technology,2018,40(1):68-80. [38] 林玉鑫,张京业. 海上风电的发展现状与前景展望[J]. 分布式能源,2023,8(2):1-10. LIN Yuxin,ZHANG Jinye. Development status and prospect of offshore wind power[J]. Distributed Energy,2023,8(2):1-10. [39] 周守为,李清平. 开发海洋能源,建设海洋强国[J]. 科技导报,2020,38(14):17-26. ZHOU Shouwei,LI Qingping. Developing marine energy and building a marine power[J]. Science & Technology Review,2020,38(14):17-26. [40] 石学法,符亚洲,李兵,等. 我国深海矿产研究:进展与发现(2011—2020)[J]. 矿物岩石地球化学通报,2021,40(2):305-318,517. SHI Xuefa,FU Yazhou,LI Bing,et al. Research on deep-sea minerals in China:Progress and discovery (2011— 2020)[J]. Bulletin of Mineralogy,Petrology and Geochemistry,2021,40(2):305-318,517. [41] 张伙带,朱本铎,任江波. 国际海底稀土资源勘查进展[J]. 矿床地质,2014,33(S1):1141-1142. ZHANG Huodai,ZHU Benze,REN Jiangbo. Progress of international seabed rare earth resources exploration[J]. Mineral Deposits,2014,33(S1):1141-1142. [42] 黄牧,石学法,毕东杰,等. 深海稀土资源勘查开发研究进展[J]. 中国有色金属学报,2021,31(10):2665-2681. HUANG Mu,SHI Xuefa,BI Dongjie,et al. Advances on study of exploration and development of deep-sea rare earth resources[J]. The Chinese Journal of Nonferrous Metals,2021,31(10):2665-2681. [43] 李红有,吴永祥,周全智,等. 我国海上风电场地质勘察问题及对策[J]. 船舶工程,2019,41(S1):399-402. LI Hongyou,WU Yongxiang,ZHOU Quanzhi,et al. Geological survey problems and countermeasures of domestic offshore wind farms[J]. Ship Engineering,2019,41(S1):399-402. [44] 汤晓勇,陈俊文,郭艳林,等. 可燃冰开发及试采技术发展现状综述[J]. 天然气与石油,2020,38(1):7-15. TANG Xiaoyong,CHEN Junwen,GUO Yanlin,et al. Development status of combustible ice mining and test production technologies[J]. Natural Gas and Oil,2020,38(1):7-15. [45] 王兆明,温志新,贺正军,等. 全球近10年油气勘探新进展特点与启示[J]. 中国石油勘探,2022,27(2):27-37. WANG Zhaoming,WEN Zhixin,HE Zhengjun,et al. Characteristics and enlightenment of new progress in global oil and gas exploration in recent ten years[J]. China Petroleum Exploration,2022,27(2):27-37. [46] 刘协鲁,陈云龙,阮海龙,等. 保压取样技术应用现状综述[J]. 地质装备,2021,22(6):9-13. LIU Xielu,CHEN Yunlong,RUAN Hailong,et al. Overview on the application status of pressure-holding sampling technology[J]. Equipment for Geotechnical Engineering,2021,22(6):9-13. [47] JACOBS P H. A new rechargeable dialysis pore water sampler for monitoring sub-aqueous in-situ sediment caps[J]. Water Research,2002,36(12):3121-3129. [48] 尹衍升. 深海及深海热液区环境服役装备与材料多因素耦合腐蚀研究现状与趋势[J]. 广州航海学院学报,2020,28(1):1-9. YIN Yansheng. Research status and trends on the multi-factor coupling corrosion mechanism for deep sea and deep-sea hydrothermal area environmental service equipment and materials[J]. Journal of Guangzhou Maritime University,2020,28(1):1-9. [49] 刘协鲁,阮海龙,赵义,等. 海域天然气水合物保温保压取样钻具研究与应用进展[J]. 钻探工程,2021,48(7):33-39. LIU Xielu,RUAN Hailong,ZHAO Yi,et al. Progress in research and application of the pressure-temperature core sampler for marine natural gas hydrate[J]. Drilling Engineering,2021,48(7):33-39. [50] 刘乐乐,刘昌岭,吴能友,等. 天然气水合物储层岩心保压转移与测试进展[J]. 地质通报,2021,40(Z1):408-422. LIU Lele,LIU Changling,WU Nengyou,et al. Advances in pressure core transfer and testing technology of offshore hydrate-bearing sediments[J]. Geological Bulletin of China,2021,40(Z1):408-422. [51] 任红. 南海天然气水合物取样技术现状及发展建议[J]. 石油钻探技术,2020,48(4):89-93. REN Hong. Current status and development recommendations for gas hydrate sampling technology in the South China Sea[J]. Petroleum Drilling Techniques,2020,48(4):89-93. [52] 刘勇,程谦,吴德发,等. 全海深环境模拟实验台的研制[J]. 液压与气动,2020,348(8):7-11. LIU Yong,CHENG Qian,WU Defa,et al. Development of an experiment device for simulating full depth ocean environment[J]. Chinese Hydraulics & Pneumatics,2020,348(8):7-11. [53] 林晓冬,马海滨,任啟森,等. Fe13Cr5Al4Mo合金在高温高压水环境中的腐蚀行为[J]. 金属学报,2022,58(12):1611-1622. LIN Xiaodong,MA Haibin,REN Qisen,et al. Corrosion behaviors of Fe13Cr5Al4Mo alloy in high-temperature high-pressure water environments[J]. Acta Metallurgica Sinica,2022,58(12):1611-1622. [54] WANG Y,WANG B,HE S,et al. Unraveling the effect of H2S on the corrosion behavior of high strength sulfur-resistant steel in CO2/H2S/Cl−Environments at ultra high temperature and high pressure[J]. Journal of Natural Gas Science and Engineering,2022,100:104477. [55] CHEN W T,LI B,GALETZ M,et al. STEM characterization of metal dusting corrosion in Ni-based alloy 600 and Fe-based alloy 800H exposed to a high- pressure environment[J]. Microscopy and Microanalysis,2019,25(S2):2332-2333. [56] 路增荣. 深海钻探取样钻杆螺纹接头优化研究[D]. 青岛:中国石油大学(华东),2015. LU Zengrong. Drill pipe thread joint research and optimization for deep-sea drilling and sampling[D]. Qingdao:China University of Petroleum (East China),2015. [57] 吴凤民,王江涛,张永康,等. 深海用铝合金海工钻杆抗电化学腐蚀性能的研究[J]. 机电工程技术,2021,50(2):30-32,75. WU Fengmin,WANG Jiangtao,ZHANG Yongkang,et al. Research of electrochemical corrosion performance of aluminum alloy offshore drill served in deep ocean[J]. Mechanical & Electrical Engineering Technology,2021,50(2):30-32,75. [58] 杨生晨. 基于深海钻探的TC27钛合金钻杆的性能研究[D]. 青岛:中国石油大学(北京),2018. YANG Shengchen. Research on performance of TC27 titanium alloy drill pipe-based on deep sea drilling[D]. Qingdao:China University of Petroleum (Beijing),2018. [59] 屈少鹏,尹衍升. 深海极端环境服役材料的研究现状与研发趋势[J]. 材料科学与工艺,2019,27(1):1-8. QU Shaopeng,YIN Yansheng. Research status and development trend of service materials in deep sea extreme environment[J]. Materials Science and Technology,2019,27(1):1-8. [60] 彭奋飞,王佳亮,万步炎,等. 适用于海底钻机的保压绳索取心钻具设计[J]. 钻探工程,2021,48(4):97-103. PENG Fenfei,WANG Jialiang,WAN Buyan,et al. Desian of the nressure-coring tool for underwater drilling rig[J]. Drilling Engineering,2021,48(4):97-103. [61] 金永平,易攀,彭佑多,等. 海高压环境下往复运动组合密封结构的密封性能研究(英文)[J]. Marine Science Bulletin,2019,21(2):36-56. JIN Yongping,YI Pan,PENG Youduo,et al. Analysis of the sealing performance of combined sealing structure under deep-sea high pressure environment[J]. Marine Science Bulletin,2019,21(2):36-56. [62] 刘银水,吴德发,李东林,等. 深海液压技术应用与研究进展[J]. 机械工程学报,2018,54(20):14-23. LIU Yinshui,WU Defa,LI Donglin,et al. Applications and research progress of hydraulic technology in deep sea[J]. Journal of Mechanical Engineering,2018,54(20):14-23. [63] 陶幸珍,冀改萍,张莹莹,等. 深海贯入装置液压单元研究[J]. 液压与气动,2019,337(9):24-28. TAO Xingzhen,JI Gaiping,ZHANG Yingying,et al. Research on hydraulic unit of deep-sea penetration device[J]. Chinese Hydraulics & Pneumatics,2019,337(9):24-28. [64] 曹学鹏,王凯丽,曹皓清,等. 变深下环境适应性液压源的性能研究[J]. 液压与气动,2018,327(11):18-23. CAO Xuepeng,WANG Kaili,CAO Haoqing,et al. Performance research of environment-adapted hydraulic power under different ocean-depths[J]. Chinese Hydraulics & Pneumatics,2018,327(11):18-23. [65] 周怀瑾. 深海海底超深孔钻机支撑系统分析与试验研究[D]. 湘潭:湖南科技大学,2020. ZHOU Huaijin. Analysis and experimental study on support system of super-long-hole seafloor drill[D]. Xiangtan:Hunan University of Science and Technology,2020. [66] 刘伟. 海底钻机自动调平系统研究[D]. 武汉:中国地质大学,2012. LIU Wei. Research on automatic leveling system for seabed drilling[D]. Wuhan:China University of Geosciences,2012. [67] 王海龙,张奇峰,全伟才,等. 全海深ROV非金属铠装脐带缆动力学性能研究[J]. 高技术通讯,2021,31(12):1293-1302. WANG Hailong,ZHANG Qifeng,QUAN Weicai,et al. Research on dynamic characteristics of the non-metal armored umbilical cable for full ocean depth ROV[J]. Chinese High Technology Letters,2021,31(12):1293-1302. [68] QUAN W,LIU Y,ZHANG A,et al. The nonlinear finite element modeling and performance analysis of the passive heave compensation system for the deep-sea tethered ROVs[J]. Ocean Engineering,2016,127:246-257. |
[1] | LIU Peng, JIN Yongping, LIU Deshun, WAN Buyan. Dynamics Modeling and Analysis of Seafloor Drill Hard Landing [J]. Journal of Mechanical Engineering, 2023, 59(23): 146-157. |
[2] | WANG Xin, ZHANG Jian, DI Chen-yang, WANG Fang. Research on Buckling Properties of Toroidal Pressure Hull with Elliptical Cross-section [J]. Journal of Mechanical Engineering, 2022, 58(5): 144-150. |
[3] | KANG Yajuan, LIU Shaojun. Summary of Research on Lifting System of Deep Sea Mining [J]. Journal of Mechanical Engineering, 2021, 57(20): 232-243. |
[4] | JIN Yongping, WAN Buyan, LIU Deshun. Reliability Analysis and Experimental for Key Component of Launch and Recovery Equipment of Seafloor Drill [J]. Journal of Mechanical Engineering, 2019, 55(8): 183-191. |
[5] | XU Hailiang, XU Cong, ZENG Yicong, WU Bo. Effect of Solid-phase Concentration on Cavitation Performance of Deep-sea Mining Pump [J]. Journal of Mechanical Engineering, 2019, 55(8): 201-207. |
[6] | JIN Yongping, WAN Buyan, LIU Deshun, PENG Youduo, GUO Yong. A Random Numerical Simulation Method for Launch and Recovery System of Seafloor Drill [J]. Journal of Mechanical Engineering, 2018, 54(23): 112-120. |
[7] | LIU Yinshui, WU Defa, LI Donglin, DENG Yipan. Applications and Research Progress of Hydraulic Technology in Deep Sea [J]. Journal of Mechanical Engineering, 2018, 54(20): 14-23. |
[8] | ZHANG Tao, DAI Yu, LIU Shaojun, CHEN Jun, HUANG Zhonghua. Multi-body Dynamic Modeling and Mobility Simulation Analysis of Deep Ocean Tracked Miner [J]. Journal of Mechanical Engineering, 2015, 51(6): 173-180. |
[9] | HUANG Zhonghua;LIU Shaojun;JIN Bo;CHEN Ying. DEEP SEA MICROBIAL CONCENTRATED AND ISOBARIC SAMPLING TECHNIQUE [J]. , 2006, 42(3): 212-216. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||