Bubble Resident Characteristics and Stabilization Mechanism on Liquid-infused Porous Surfaces
ZHANG Guotao1,2, CAI Weijie1, TONG Baohong1, TU Deyu1, LIU Qingyun1
1. School of Mechanical Engineering, Anhui University of Technology, Maanshan 243002; 2. State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084
ZHANG Guotao, CAI Weijie, TONG Baohong, TU Deyu, LIU Qingyun. Bubble Resident Characteristics and Stabilization Mechanism on Liquid-infused Porous Surfaces[J]. Journal of Mechanical Engineering, 2024, 60(21): 232-242.
[1] SONG Tingting,LIU Qi,LIU Jingyuan,et al. Fabrication of super slippery sheet-layered and porous anodic aluminium oxide surfaces and its anticorrosion property[J]. Applied Surface Science,2015,355:495-501. [2] ZHUO Yizhi,WANG Feng,XIAO Senbo,et al. One-step fabrication of bioinspired lubricant-regenerable icephobic slippery liquid-Infused porous surfaces[J]. ACS Omega,2018,3:10139-10144. [3] XIANG Tengfei,ZHANG Min,SADIG H,et al. Slippery liquid-infused porous surface for corrosion protection with self-healing property[J]. Chemical Engineering Journal,2018,345:147-155. [4] SAKURABA K,KITANO S,KOWALSKI D,et al. Slippery liquid-infused porous surfaces on aluminum for corrosion protection with improved self-healing ability[J]. ACS Applied Materials & Interfaces,2021,13:45089-45096. [5] WANG Jiadao,WANG Bao,CHEN Darong. Underwater drag reduction by gas[J]. Friction,2014,2(4):295-309. [6] LI Jiang,CHEN Haosheng,ZHOU Weizheng,et al. Growth of bubbles on a solid surface in response to a pressure reduction[J]. Langmuir,2014,30(15):4223-4228. [7] 徐行,张立保,舒现维,等. 孔隙深度对多孔储液介质摩擦学性能的影响研究[J]. 摩擦学学报,2022,42(3):570-579. XU Xing,ZHANG Libao,SHU Xianwei,et al. Tribological properties of the porous liquid storage medium with different pore depths[J]. Tribology,2022,42(3):570-579. [8] 秦红玲,徐行,舒现维,等. 多孔储液介质自润滑机理研究进展[J]. 机械工程学报,2022,58(19):166-179. QIN Hongling,XU Xing,SHU Xianwei,et al. Research progress on the self-lubrication mechanism of liquid-porous medium[J]. Journal of Mechanical Engineering,2022,58(19):166-179. [9] LU Yan. Drag reduction by nanobubble clusters as affected by surface wettability and flow velocity:Molecular dynamics simulation[J]. Tribology International,2019,137:267-273. [10] 戴双武,卢艳. 微结构及温度耦合下的微通道纳米气泡滑移效应[J]. 机械工程学报,2022,58(11):249-259. DAI Shuangwu,LU Yan. Slip effect of microchannel nanobubbles under the coupling of microstructure and temperature[J]. Journal of Mechanical Engineering,2022,58(11):249-259. [11] DILIP D,KUMAR S,BOBJI M,et al. Sustained drag reduction and thermo-hydraulic performance enhancement in textured hydrophobic microchannels[J]. International Journal of Heat & Mass Transfer,2018,119:551-563. [12] 朱睿,庄启彬,李尚,等. 电解微气泡生长行为及驻留稳定性[J]. 兵工学报,2021,42(5):1023-1031. ZHU Rui,ZHUANG Qibin,LI Shang,et al. Growth behaviors and resident stability of electrolyzed microbubble[J]. Acta Armamentarii,2021,42(5):1023-1031. [13] WANG Hanwen,WANG Kaiying,LIU Guohua. Drag reduction by gas lubrication with bubbles[J]. Ocean Engineering,2022,258(15):111833. [14] CAI Jiejin,GONG Ziqi,TAN Bing. Experimental and theoretical investigation of bubble dynamics on vertical surfaces with different wettability for pool boiling[J]. International Journal of Thermal Sciences,2023,184:107966. [15] HIRT C,NICHOLS B. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics 1981,39(1):201-225. [16] BRACKILL J,KOTHE D,ZEMACH C. A continuum method for modeling surface tension[J]. Journal of Computational Physics,1992,100(2):335-354. [17] KISTLER S. Hydrodynamics of wetting;Wettability[M]. Marcel Dekker:New York,1993;311-429. [18] MIRSANDI H,SMIT W,KONG G,et al. Influence of wetting conditions on bubble formation from a submerged orifice[J]. Experiments in Fluids,2020,61:83. [19] GNYLOSKURENKO S,BYAKOVA A,RAYCHENKO T,et al. Influence of wetting conditions on bubble formation at orifice in an inviscid liquid. Transformation of bubble shape and size[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2003,218:73-87. [20] THEODORAKIS P,AMIRFAZLI A,HU B,et al. Droplet control based on pinning and substrate wettability[J]. Langmuir,2021,37:4248-4255.