Prediction Model for Phase Transformation Initiation of TRIP Type Duplex Stainless Steel under Cyclic Loading
ZOU Zongyuan1, SONG Yu1, WANG Hongzhong2, LIU Guannan1, CHEN Lei3, JIN Miao1
1. Key Laboratory of Advanced Forging & Stamping Technology and Science of Ministry of Education, Yanshan University, Qinghuangdao 066004; 2. NORINCO Jiangshan Heavy Industries Research Institute Co., Ltd., Xiangyang 441000; 3. School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004
ZOU Zongyuan, SONG Yu, WANG Hongzhong, LIU Guannan, CHEN Lei, JIN Miao. Prediction Model for Phase Transformation Initiation of TRIP Type Duplex Stainless Steel under Cyclic Loading[J]. Journal of Mechanical Engineering, 2024, 60(14): 166-173.
[1] 赵雨. 汽车轻量化材料及制造工艺分析[J]. 内燃机与配件,2021(16):44-45. ZHAO Yu. Analysis of automotive light weight materials and manufacturing process[J]. Int. Combust. Eng. Parts,2021(16):44-45. [2] 徐成永,佟鑫. 都市圈轨道交通发展研究及对策[J]. 现代城市轨道交通,2022(3):1-8. XU Chengyong,TONG Xin. Research and counter measures on the development of metropolitan rail transit[J]. Mod. Urban Rail Transit,2022(3):1-8. [3] ZHOU Bo,KANG Zetian,WANG Zhiyong,et al. Finite element method on shape memory alloy structure and its applications[J]. Chinese Journal of Mechanical Engineering,2019,32(5):125-135. [4] KANG Junyun,KIM H Y,KIM K I,et al. Effect of austenitic texture on tensile behavior of lean duplex stainless steel with transformation induced plasticity (TRIP)[J]. Mater. Sci. Eng.,2017,A681:114. [5] 金淼,李文权,郝硕,等. 固溶温度对Mn-N型双相不锈钢拉伸变形行为的影响[J]. 金属学报,2019,55(4):436-444. JIN Miao,LI Wenquan,HAO Shuo,et al. Effect of solution temperature on tensile deformation behavior of Mn-N type duplex stainless steel[J]. Acta. Metall. Sin.,2019,55(4):436-444. [6] 陈雷,郝硕,梅瑞雪,等. 节约型双相不锈钢TRIP效应致塑性增量及其固溶温度依赖性[J]. 金属学报,2019,55(11):1359-1366. CHEN Lei,HAO Shuo,MEI Ruixue,et al. Plasticity increment and solution temperature dependence of economizing duplex stainless steel by TRIP effect[J]. Acta. Metall. Sin.,2019,55(11):1359-1366. [7] JARVENPAA A,JASKARI M,MAN J,et al. Stability of grain-refined reversed structures in a 301LN austenitic stainless steel under cyclic loading[J]. Mater. Sci. Eng. A,2017,703:280-292. [8] ZHANG Z,KOYAMA M,WANG M M,et al. Microstructural mechanisms of fatigue crack non-propagation in TRIP maraging steels[J]. Int. J. Fatigue,2018,113:126-136. [9] ZHAO L,LIAN Y. Dislocation structure evolution in304L stainless steel and weld joint during cyclic plastic deformation[J]. Mater. Sci. Eng. A,2017,690:16-31. [10] PESSOA D F,KIRCHHOFF G,ZIMMERMANN M. Influence of loading frequency and role of surface micro-defects on fatigue behavior of meta-stable austenitic stainless steel AISI 304[J]. Int. J. Fatigue,2017,103:48-59. [11] SLYADNIKOV E E,TURCHANOVSKII I Y. Order parameter and kinetics of non-equilibrium phase transition stimulated by the impact of volumetric heat source[J]. Russ. Phys. J.,2017,59(9):1466-1474. [12] OSHIDA Y,DEGUCHI A. Martensite formation and the related toughness in 304 stainless steel during low temperature fatigue[J]. Fatigue Fract. Eng. Mater. Struct., 2010,10(5):363-372. [13] TAKATA S,NOGUCHI T. A simple kinetic model for the phase transition of the vander waals fluid[J]. J. Stat. Phys.,2018,172(3):880-903. [14] HAO Shuo,CHEN Lei,ZOU Zongyuan,et al. Microstructural evolution and cyclic softening / hardening response of a TRIP-assisted duplex stainless steel[J]. Mater. Sci. Eng. A,2021,811:141026. [15] 杨钒,梁君,杨瑞霞. 304不锈钢板材冲压成形中应变诱发马氏体及其影响[J]. 机械工程学报,2021,57(8):175-183. YANG Fan,LIANG Jun,YANG Ruixia. Strain-induced martensite in stamping and forming of 304 stainless steel plates and its effects[J]. Journal of Mechanical Engineering,2021,57(8):175-183. [16] SONG K,WANG K,ZHAO L,et al. A combined elastic-plastic framework unifying the various cyclic softening/hardening behaviors for heat resistant steels:Experiment and modeling[J]. Int. J. Fatigue,2022,158:106736. [17] LI Yajing,YU Dunji,LI Bingbing,et al. Martensitic transformation of an austenitic stainless steel under non-proportional cyclic loading[J]. Int. J. Fatigue,2019,124:338-347. [18] 卢沛,卢志明,杜斌康,等. 拉伸塑性变形对304不锈钢马氏体相变规律的影响[J]. 轻工机械,2013,31(5):88-91. LU Pei,LU Zhiming,DU Binkang,et al. Effect of tensile plastic deformation on martensitic transformation law of 304 stainless steel[J]. Light Ind. Mach.,2013,31(5):88-91. [19] MOALLEMI M,KERMANPUR A,NAJAFIZADEHA,et al. Deformation-induced martensitic transformation in a 201austenitic steel:The synergy of stacking fault energy and chemical driving force[J]. Mater. Sci. Eng. A,2016,653:147-152. [20] BEHJATI P,NAJAFIZADEH A. Role of chemical driving force in martensitic transformations of high-purity Fe-Cr-Ni alloys[J]. Metall. Mater. Trans. A,2011,42(12):3752-3760. [21] Kaufman L,Cohen M. Thermodynamics and kinetics of martensitic transformation[J]. Trans. Metall. Soc. AIME,1959,215:218-227. [22] STRINGFELLOW R G,PARKS D M,OLSON G B. A constitutive model for transformation plasticity accompanying strain-induced martensitic transformations in metastable austenitic steels[J]. Acta Metall. Mater.,1992,40(7):1703-1716. [23] DAN Wenjiao,HU Zhigang,ZHANG Wenjiao. Influences of cyclic loading on martensite transformation of TRIP steels[J]. Met. Mater. Int.,2013,19(2):251-257. [24] SMAGE M,WALTHER F,EIFLER D. Deformation-induced martensitic transformation in meta stable austenitic steels[J]. Mater. Sci. Eng.A,2008,483:394-397. [25] DALVAND P,RAYGAN S,GABRIEL A,et al. Effect of aging on the structure and transformation behavior of Cu-12Al-3.5Ni-0.7Ti-0.05RE high temperature shape memory alloy[J]. Met. Mater. Int.,2020,26(9):1354-1365. [26] KIM D,WON J W. Effect of oxygen contenton the phase transformation of Ti-5A1-2.5Fe alloy during continuous cooling[J]. J. Korean Inst. Met. Mater.,2017,55(9):600-608. [27] 李辉平,贺连芳,杨肖丹,等. 形变和冷却对B1500HS硼钢马氏体相变的影响[J]. 机械工程学报,2016,52(10):67-74. LI Huiping,HE Lianfang,YANG Xiaodan,et al. Effect of deformation and cooling on the martensitic phase transformation of B1500HS boron steel[J]. Journal of Mechanical Engineering,2016,52(10):67-74.