Fatigue Life Prediction and Fracture Behavior Study of Fretting Interface at Three-dimensional Line Contact
DONG Qingbing1,2, CHEN Zhuang1,2, LUO Zhentao1,2, ZHANG Jie3, WEI Jing1,2
1. State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400030; 2. College of Mechanical and Vehicle Engineering, Chongqing University, Chongqing 400030; 3. School of Mechanical and Electrical Engineering, Southwest Petroleum University, Chengdu 610500
DONG Qingbing, CHEN Zhuang, LUO Zhentao, ZHANG Jie, WEI Jing. Fatigue Life Prediction and Fracture Behavior Study of Fretting Interface at Three-dimensional Line Contact[J]. Journal of Mechanical Engineering, 2024, 60(8): 107-120.
[1] ANDRESEN H,HILLS D A. A review of partial slip solutions for contacts represented by half-planes including bulk tension and moments[J]. Tribology International,2020,143:106050. [2] JEUNG H-K,KWON J-D,LEE C Y. Crack initiation and propagation under fretting fatigue of inconel 600 alloy[J]. Journal of Mechanical Science and Technology,2015,29(12):5241-5244. [3] ARNAUD P,FOUVRY S. Modeling the fretting fatigue endurance from partial to gross slip:The effect of debris layer[J]. Tribology International,2020,143:106069. [4] MADGE J J,LEEN S B,MCCOLL I R,et al. Contact-evolution based prediction of fretting fatigue life:Effect of slip amplitude[J]. Wear,2007,262(9):1159-1170. [5] CARDOSO R A,DOCA T,NÉRON D,et al. Wear numerical assessment for partial slip fretting fatigue conditions[J]. Tribology International,2019,136:508-523. [6] BERTHEL B,MOUSTAFA A R,CHARKALUK E,et al. Crack nucleation threshold under fretting loading by a thermal method[J]. Tribology International,2014,76:35-44. [7] HILLS D A,ANDRESEN H N. Mechanics of fretting and fretting fatigue[M]. Berlin:Springer,2021. [8] LIU J,ZHANG Z,LI B,et al. Multiaxial fatigue life prediction of GH4169 alloy based on the critical plane method[J]. Metals,2019,9(2):255. [9] PEREIRA K,BHATTI N,ABDEL WAHAB M. Prediction of fretting fatigue crack initiation location and direction using cohesive zone model[J]. Tribology International,2018,127:245-254. [10] CARPINTERI A,KUREK M,ŁAGODA T,et al. Estimation of fatigue life under multiaxial loading by varying the critical plane orientation[J]. International Journal of Fatigue,2017,100:512-520. [11] BHATTI N A,ABDEL WAHAB M. Fretting fatigue crack nucleation:A review[J]. Tribology International,2018,121:121-138. [12] SMITH K N,TOPPER T,WATSON P. A stress–strain function for the fatigue of metals[J]. J. Materials,1970,5:767-778. [13] SOCIE D F,MORROW J. Review of contemporary approaches to fatigue damage analysis [M]//BURKE J J,WEISS V. Risk and failure analysis for improved performance and reliability. Boston:Springer,1980:141-194. [14] BROWN M W,MILLER K J. Initiation and growth of cracks in biaxial fatigue[J]. Fatigue & Fracture of Engineering Materials & Structures,1979,1:231-246. [15] RANGEL D,ERENA D,VÁZQUEZ J,et al. Prediction of initiation and total life in fretting fatigue considering kinked cracks[J]. Theoretical and Applied Fracture Mechanics,2022,119:103345. [16] SOCIE D. Multiaxial fatigue damage models[J]. Journal of Engineering Materials and Technology,1987,109(4):293-298. [17] LYKINS C D,MALL S,JAIN V. An evaluation of parameters for predicting fretting fatigue crack initiation[J]. International Journal of Fatigue,2000,22(8):703-716. [18] LYKINS C D,MALL S,JAIN V K. Combined experimental-numerical investigation of fretting fatigue crack initiation[J]. International Journal of Fatigue,2001,23(8):703-711. [19] RUTHERFORD B A,CISKO A R,ALLISON P G,et al. Effect of tensile mean strain on fatigue behavior of Al-Li alloy 2099[J]. Journal of Materials Engineering and Performance,2020,29(8):4928-4933. [20] NESLÁDEK M,PACETTI L,PAPUGA J. Validation of fatigue criteria under fretting fatigue conditions[J]. International Journal of Fatigue,2022,161:106895. [21] LI J,ZHANG Z,SUN Q,et al. A new multiaxial fatigue damage model for various metallic materials under the combination of tension and torsion loadings[J]. International Journal of Fatigue,2009,31:776-781. [22] LI X,ZUO Z,QIN W. A fretting related damage parameter for fretting fatigue life prediction[J]. International Journal of Fatigue,2015,73:110-118. [23] NAMJOSHI S,MALL S,JAIN V,et al. Fretting fatigue crack initiation mechanism in Ti-6Al-4V[J]. Fatigue & Fracture of Engineering Materials & Structures,2002,25:955-964. [24] 王肇喜,白金,王海东,等. 临界平面多轴疲劳寿命估算模型的验证与评估[J]. 失效分析与预防,2020,15(6):343-348. WANG Zhaoxi,BAI Jin,WANG Haidong,et al. Verification and evaluation of critical plane-based multiaxial fatigue life prediction models[J]. Failure Analysis and Prevention,2020,15(6):343-348. [25] 陈壮. 球-滚道接触运动对滚道疲劳寿命的影响研究[D]. 昆明:昆明理工大学,2020. CHEN Zhuang. Study on the effect of ball-raceway contact movement on raceway fatigue life[D]. Kunming:Kunming University of Science and Technology,2020. [26] KONG Y,BENNETT C J,HYDE C J. A review of non-destructive testing techniques for the in-situ investigation of fretting fatigue cracks[J]. Materials & Design,2020,196:109093. [27] HOJJATI-TALEMI R,ABDEL WAHAB M,DE PAUW J,et al. Prediction of fretting fatigue crack initiation and propagation lifetime for cylindrical contact configuration[J]. Tribology International,2014,76:73-91. [28] DENG Q,YIN X,WANG D,et al. Numerical analysis of crack propagation in fretting fatigue specimen repaired by stop hole method[J]. International Journal of Fatigue,2022,156:106640. [29] MINDLIN R D. Compliance of elastic bodies in contact[J]. Journal of Applied Mechanics,2021,16(3):259-268. [30] NOWELL D,HILLS D A. Crack initiation criteria in fretting fatigue[J]. Wear,1990,136(2):329-343. [31] TAGHIZADEH H,CHAKHERLOU T N,AGHDAM A B. Prediction of fatigue life in cold expanded Al-alloy 2024-T3 plates used in double shear lap joints[J]. Journal of Mechanical Science and Technology,2013,27(5):1415-1425. [32] SUM W S,WILLIAMS E J,LEEN S B. Finite element,critical-plane,fatigue life prediction of simple and complex contact configurations[J]. International Journal of Fatigue,2005,27(4):403-416. [33] LEMAITRE J,CHABOCHE J-L. Mechanics of solid materials[M]. Cambridge:Cambridge University Press,1990. [34] 张远彬. 铁路轮轴过盈配合部位微动疲劳裂纹萌生的仿真研究[D]. 成都:西南交通大学,2018. ZHANG Yuanbin. Finite element simulation of fretting fatigue crack initation in press-fitted part of railway wheel-axle[D]. Chengdu:Southwest Jiaotong University,2018. [35] 董国疆,张猛,魏留伟,等. 底盘构件多轴随机载荷下高周疲劳准则研究[J]. 中国机械工程,2021,32(19):2294-2304. DONG Guojiang,ZHANG Meng,WEI Liuwei,et al. Study on high cycle fatigue criteria under multi-axial random loads of chassis parts[J]. China Mechanical Engineering,2021,32(19):2294-2304. [36] MADGE J J,LEEN S B,SHIPWAY P H. The critical role of fretting wear in the analysis of fretting fatigue[J]. Wear,2007,263(1):542-551. [37] ERDOGAN F,SIH G C. On the crack extension in plates under plane loading and transverse shear[J]. Journal of Basic Engineering,1963,85(4):519-525. [38] LIN Xinhao,XU Yazhou. An equivalent damage model to fretting fatigue initiation life considering wear[J]. International Journal of Fatigue,2022,163:107048. [39] GINER E,SUKUMAR N,DENIA F D,et al. Extended finite element method for fretting fatigue crack propagation[J]. International Journal of Solids and Structures,2008,45(22):5675-5687. [40] Fracture Analysis Consultants,Inc. Franc3D user’s guide[M]. Version 8.1. Ithaca:Fracture Analysis Consultants,Inc.,2022. [41] 杨新华,陈传尧. 疲劳与断裂[M]. 2版. 武汉:华中科技大学出版社,2008. YANG Xinhua,CHEN Chuanyao. Fatigue and fracture [M]. 2nd ed. Wuhan:Huazhong University of science & Technology Press,2008. [42] WANG C,PEREIRA K,WANG D,et al. Fretting fatigue crack propagation under out-of-phase loading conditions using extended maximum tangential stress criterion[J]. Tribology International,2023,187:108738. [43] PINTO A L,ARAÚJO J A,TALEMI R. Effects of fretting wear process on fatigue crack propagation and life assessment[J]. Tribology International,2021,156:106787.