Journal of Mechanical Engineering ›› 2024, Vol. 60 ›› Issue (5): 317-351.doi: 10.3901/JME.2024.05.317
Previous Articles Next Articles
YANG Shucai1,2, HAN Pei1,2, TONG Xin1,2, LIU Xianli1,2, ZHANG Xiaohui1,2
Received:
2023-03-12
Revised:
2023-11-08
Online:
2024-03-05
Published:
2024-05-30
CLC Number:
YANG Shucai, HAN Pei, TONG Xin, LIU Xianli, ZHANG Xiaohui. Research on Tool Mesoscopic Geometric Feature Forming Technology and Its Function[J]. Journal of Mechanical Engineering, 2024, 60(5): 317-351.
[1] KSHITIJ P,SAURAV D. Hot machining of difficult-to-cut materials:A review[J]. Materials Today:Proceedings,2021,44(P1):2710-2715. [2] 沈雪红,张定华,姚倡锋,等. 钛合金切削加工表面完整性形成机制研究进展[J]. 航空材料学报,2021,41(4):1-16. SHEN Xuehong,ZHANG Dinghua,YAO Zhangfeng,et al. Research progress on the formation mechanism of surface integrity in machining of titanium alloys[J]. Journal of Aeronautical Materials,2021,41(4):1-16. [3] NAGIMOVA A,PERVEEN A. A review on laser machining of hard to cut materials[J]. Materials Today:Proceedings,2019,18(7):2440-2447. [4] 高鹏,王鹏宇. 难加工材料加工方法的现状与发展趋势[J]. 中国金属通报,2018(8):8-9. GAO Peng,WANG Pengyu. The status quo and development trend of processing methods for difficult-to-machine materials[J]. China Metal Bulletin,2018(8):8-9. [5] GUAN N X,WEI A X,GUO R X. Research of dry cutting technology based on green manufacturing[J]. Applied Mechanics and Materials,2013,2369(316-317):571-573. [6] 杨明卓. 浅谈机械制造过程中绿色制造技术的应用与发展[J]. 内燃机与配件,2019(14):246-247. YANG Mingzhuo. On the application and development of green manufacturing technology in the process of machinery manufacturing[J]. Internal Combustion Engines and Parts,2019(14):246-247. [7] GRIGORIEV S N,SOE T N,HAMDY K,et al. The influence of surface texturing of ceramic and superhard cutting tools on the machining process—A review[J]. Materials,2022,15(19):6945-6945. [8] ZOU Y X,SUN J F,CHEN W Y,et al. The effect of tool edge preparation of indexable carbide insert[J]. Key Engineering Materials,2012,1596(499-499):342-347. [9] 郭江,王兴宇,赵勇,等. 微织构刀具制备技术及加工性能研究新进展[J]. 机械工程学报,2021,57(13):172-200. GUO Jiang,WANG Xingyu,ZHAO Yong,et al. New progress in research on preparation technology and machining performance of micro-textured tools[J]. Journal of Mechanical Engineering,2021,57(13):172- 200. [10] MAO Z X,CAI C T,QI J X. Analysis and research of the technology based on carbide tool passivation[J]. Applied Mechanics and Materials,2014,3072(541-542):579-583. [11] KISHAWY H A,SALEM A,HEGAB H,et al. An analytical model for the optimized design of micro-textured cutting tools[J]. CIRP Annals - Manufacturing Technology,2022,71(1):49-52. [12] 唐联耀,唐玲艳,李鹏南,等. 微织构刀具切削钛合金的研究进展[J]. 宇航材料工艺,2020,50(4):8-12. TANG Lianyao,TANG Lingyan,LI Pengnan,et al. Research progress on cutting titanium alloys with micro-textured tools[J]. Aerospace Materials Technology,2020,50(4):8-12. [13] 冯新敏,裴泽,胡景姝,等. 微织构刀具研究现状[J].制造技术与机床,2018(7):29-35. FENG Xinmin,PEI Ze,HU Jingshu,et al. Research status of micro-textured cutting tools[J]. Manufacturing Technology and Machine Tools,2018(7):29-35. [14] 戚凯峰,张春堂,赵成喜.微织构刀具研究现状及展望[J]. 机械工程师,2021(7):77-78,82. QI Kaifeng,ZHANG Chuntang,ZHAO Chengxi. Research status and prospect of micro-textured cutting tools[J]. Mechanical Engineer,2021(7):77-78,82. [15] PRIYA R,SOMASHEKHAR S H. Role of textured tool in improving machining performance:A review[J]. Journal of Manufacturing Processes,2019,43:47-73. [16] WAHAB J A,GHAZALI M J,YUSOFF W M W,et al. Enhancing material performance through laser surface texturing:a review[J]. Transactions of the IMF,2016,94(4):193-198. [17] 葛良辰,马剑军,曹宇鹏,等. 激光微加工在微织构技术中的应用及研究进展[J]. 激光与红外,2019,49(8):921-928. GE Liangchen,MA Jianjun,CAO Yupeng,et al. Application and research progress of laser micro-processing in micro-texture technology[J]. Laser and Infrared,2019,49(8):921-928. [18] 赵昌龙,王旭旭,吕起印,等. 电火花加工表面微织构仿真与实验研究[J]. 制造技术与机床,2021(7):21-26. ZHAO Changlong,WANG Xuxu,LÜ Qiyin,et al. Simulation and experimental research on surface micro-texture of EDM[J]. Manufacturing Technology and Machine Tool,2021(7):21-26. [19] YANG S C,HAN P,LIU X,et al. Accurate preparation of mesoscopic geometric characteristics of ball end milling cutter and optimization of cutting performance[J]. Proceedings of the Institution of Mechanical Engineers,2022,236(3):255-269. [20] HAYDEE M Z,DEBAJYOTI B,PETKO P,et al. Effects of laser micro-textured surfaces in condensation heat transfer[J]. Procedia CIRP,2020,95:927-932. [21] 刘霄. 球头铣刀的介观几何特征精准制备及切削性能优化[D]. 哈尔滨:哈尔滨理工大学,2020. LIU Xiao. Precision preparation and cutting performance optimization of mesoscopic geometric features of ball-end milling cutters[D]. Harbin:Harbin University of Science and Technology,2020,20-25. [22] 刘宇航,李岩,李林,等. 316L不锈钢表面微织构激光加工工艺参数[J]. 烟台大学学报,2021,34(3):266-271. LIU Yuhang,LI Yan,LI Lin,et al. Process parameters for laser processing of microstructure on 316L stainless steel surface[J]. Journal of Yantai University,2021,34(3):266-271. [23] SONG W L,WANG S J,XIA Z X,et al. Effect of microhole-textures filled with graphite on tribological properties of WC/TiC/Co carbide tools[J]. Proceedings of the Institution of Mechanical Engineers,Part J:Journal of Engineering Tribology,2019,233(11):1627-1638. [24] 梁志强,李蒙招,陈碧冲,等. 基于微磨削方法的微织构刀具制备与切削性能研究[J]. 表面技术,2020,49(2):143-150. LIANG Zhiqiang,LI Mengzhao,CHEN Bichong,et al. Study on the preparation and cutting performance of micro-textured tools based on micro-grinding method[J]. Surface Technology,2020,49(2):143-150. [25] 邓志强. 非对称形貌织构刀具干切削钛合金实验研究[D]. 湘潭:湘潭大学,2018. DENG Zhiqiang. Experimental study on dry cutting of titanium alloy with asymmetrical texture texture tool[D]. Xiangtan:Xiangtan University,2018. [26] KUNAR S,MAHATA S,BHATTACHARYYA B. Influence of electrolytes on surface texture characteristics generated by electrochemical micromachining[J]. Journal of Micromanufacturing,2018,1(2):124-133. [27] 陈相波. 仿生自润滑微织构制造及其摩擦磨损性能研究[D]. 广州:华南理工大学,2019. CHEN Xiangbo. Research on biomimetic self-lubricating micro-texture manufacturing and its friction and wear properties[D]. Guangzhou:South China University of Technology,2019. [28] 陈汇丰. 面向绿色切削的等离子体织构化刀具设计制备及其切削性能研究[D].厦门:厦门大学,2018. CHEN Huifeng. Design,preparation and cutting performance of plasma-textured tools for green cutting[D]. Xiamen:Xiamen University,2018. [29] 王世杰,邓建新,孟莹,等. 超声滚压加工表面微织构的研究[J]. 制造技术与机床,2022(2):73-79. WANG Shijie,DENG Jianxin,MENG Ying,et al. Research on surface micro-texture of ultrasonic rolling processing[J]. Manufacturing Technology and Machine Tool,2022(2):73-79. [30] WOS S,KOSZELA W,PAWLUS P. The effect of graphite surface texturing on the friction reduction in dry contact[J]. Tribology International,2020,151:1-20. [31] 高壮,刘志奇,陈东良,等. 铜合金表面织构冷压成形实验研究[J]. 锻压技术,2022,47(1):196-202. GAO Zhuang,LIU Zhiqi,CHEN Dongliang,et al. Experimental study on cold forming of copper alloy surface texture[J]. Forging Technology,2022,47(1):196-202. [32] 吴广峰,胡鸿胜,朱文坚. LIGA工艺基础及其发展趋势[J]. 机电工程技术,2007(12):89-92. WU Guangfeng,HU Hongsheng,ZHU Wenjian. LIGA process basis and development trend[J]. Electromechanical Engineering Technology,2007(12):89-92. [33] 张文泉. 原位成型微织构Al2O3-TiC陶瓷刀具切削仿真与优化[D]. 济南:齐鲁工业大学,2018. ZHANG Wenquan. In situ forming micro texture Al2O3-TiC ceramic tool cutting simulation and optimization[D]. Jinan:Qilu University of Technology,2018. [34] 华显刚. 陶瓷刀具表面微织构的激光加工工艺基础及刀具磨损机理研究[D]. 广州:广东工业大学,2015. HUA Xiangang. Research on laser processing technology basis and tool wear mechanism of ceramic tool surface micro-texture[D]. Guangzhou:Guangdong University of Technology,2015. [35] DESHMUKH N,RAJURKAR A,KOLEKAR O,et al. Thermal modeling of laser surface micro-texturing:Investigation on effects of laser parameters on dimple-texture dimensions and aspect ratio[J]. Materials Today:Proceedings,2021,46:8374-8380. [36] AHUIR-TORRES J I,ARENAS M A,PERRIE W,et al. Influence of laser parameters in surface texturing of Ti6Al4V and AA2024-T3 alloys[J]. Optics and Lasers in Engineering,2018,103:100-109. [37] 苏永生,李亮,何宁,等. 激光加工硬质合金刀具表面微织构的试验研究[J]. 中国激光,2014,41(6):66-72. SU Yongsheng,LI Liang,HE Ning,et al. Experimental study on the surface micro-texture of laser processing cemented carbide tools[J]. China Laser,2014,41(6):66-72. [38] 阚凯,杨凤双. 基于电火花线切割技术制备刀具表面微织构研究[J]. 工具技术,2021,55(11):36-40. KAN Kai,YANG Fengshuang. Research on tool surface micro texture based on WEDM[J]. Tool Technology,2021,55(11):36-40. [39] KOSHY P,TOVEY J. Performance of electrical discharge textured cutting tools[J]. CIRP Annals-Manufacturing Technology,2011,60(1):153-156. [40] MALAYATH G,SIDPARA A M,DEB S. Fabrication of micro-end mill tool by EDM and its performance evaluation[J]. Machining Science and Technology,2020,24(2):169-194. [41] DHAGE S,JAYAL A D,SARKAR P. Effects of surface texture parameters of cutting tools on friction conditions at tool-chip interface during dry machining of AISI 1045 steel[J]. Procedia Manufacturing,2019,33:794-801. [42] GOSWAMI A,UMASHANKAR R,GUPTA A K,et al. Development of a microstructured surface using the FIB[J]. Journal of Micromanufacturing,2018,1(1):53-61. [43] LIAN Y S,XIE C P,MU C L,et al. Preparation technology of micro-textured tools fabricated by inductively coupled plasma etching[J]. Surface & Coatings Technology,2019,370:177-186. [44] OTERO J E,OCHOA E G,VALLINOT I B,et al. Optimising the design of textured surfaces for reducing lubricated friction coefficient[J]. Lubrication Science,2017,29(3):183-199. [45] 邢传斐,沈岩,袁晓帅,等. 电解微织构对镀铬气缸套摩擦磨损性能的影响[J]. 中国表面工程,2022,35(6):171-182. XING Chuanfei,SHEN Yan,YUAN Xiaoshuai,et al. Effect of electrolytic micro texture on friction and wear properties of chrome plated cylinder liner[J]. China Surface Engineering,2022,35(6):171-182. [46] 戚宝运. 基于表面微织构刀具的钛合金绿色切削冷却润滑技术研究[D]. 南京:南京航空航天大学,2011. QI Baoyun. Research on green cutting cooling and lubrication technology of titanium alloy based on surface micro-textured tools[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2011. [47] 刘绪超. 表面阶梯状微织构刀具设计制造及其切削性能研究[D]. 青岛:青岛理工大学,2018. LIU Xuchao. Research on the design and manufacture of surface stepped micro-textured tools and their cutting performance[D]. Qingdao:Qingdao Technological University,2018. [48] 刘峰,郭旭红,韩玉杰,等. 基于离子束辅助激光的硬质合金表面微织构制备方法研究[J]. 表面技术,2021,50(4):103-112. LIU Feng,GUO Xuhong,HAN Yujie,et al. Study on the preparation method of cemented carbide surface micro-texture based on ion beam assisted laser[J]. Surface Technology,2021,50(4):103-112. [49] 马小林. 超硬材料微坑织构多元融合成型技术及机理研究[D]. 北京:北方工业大学,2015. MA Xiaolin. Research on the technology and mechanism of multivariate fusion molding of micro-pit texture of superhard materials[D]. Beijing:North China University of Technology,2015. [50] JIANG J L,SUN S F,WANG D X,et al. Surface texture formation mechanism based on the ultrasonic vibration-assisted grinding process[J]. International Journal of Machine Tools and Manufacture,2020,156(3):103595. [51] KAMEYAMA Y,OHMORI H,KASUGA H,et al. Fabrication of micro-textured and plateau-processed functional surface by angled fine particle peening followed by precision grinding[J]. CIRP Annals - Manufacturing Technology,2015,64(1):549-552. [52] LIU X L,TONG X,YANG S C,et al. Models of the relationship among geometric parameters and anti-friction mechanism of micro-texture ball-end milling cutter[J]. Advances in Mechanical Engineering,2018,10(6):1-20. [53] ITO H,KANEDA K,YUHTA T,et al. Reduction of polyethylene wear by concave dimples on the frictional surface in artificial hip joints[J]. The Journal of Arthroplasty,2000,15(3):332-338. [54] 曾亚维,陈立宇,杨夏明,等. 表面微织构改善摩擦性能的研究进展[J]. 工具技术,2016,50(5):3-7. ZENG Yawei,CHEN Liyu,YANG Xiaming,et al. Research progress on surface micro-texture to improve friction performance[J]. Tool Technology,2016,50(5):3-7. [55] WU Z,DENG J X,SU C,et al. Performance of the micro-texture self-lubricating and pulsating heat pipe self-cooling tools in dry cutting process[J]. International Journal of Refractory Metals and Hard Materials,2014,45:238-248. [56] 王英姿. 刀具表面微织构的研究现状与进展[J]. 山东理工大学学报,2019,33(5):39-44. WANG Yingzi. The research status and progress of the surface micro-texture of cutting tools[J]. Journal of Shandong University of Technology,2019,33(5):39-44. [57] 连云崧. 软涂层微纳织构自润滑刀具的制备及其切削性能研究[D]. 济南:山东大学,2014. LIAN Yunsong. Preparation and cutting performance of self-lubricating tool with micro-nano texture with soft coating[D]. Jinan:Shandong University,2014. [58] 吴泽. 微织构自润滑与振荡热管自冷却双重效用的干切削刀具的研究[J]. 济南:山东大学,2013. WU Ze. Research on dry cutting tools with dual effects of micro-texture self-lubricating and oscillating heat pipe self-cooling[J]. Jinan:Shandong University,2013. [59] OZLU E,BUDAK E,MOLINARI A. Analytical and experimental investigation of rake contact and friction behavior in metal cutting[J]. International Journal of Machine Tools & Manufacture,2009,49(11):865-875. [60] 佟欣. 球头铣刀微织构精准分布设计及其参数优化研究[D]. 哈尔滨:哈尔滨理工大学,2019. TONG Xin. Research on precise distribution design and parameter optimization of micro-texture of ball-end milling cutter[D]. Harbin:Harbin University of Science and Technology,2019. [61] 何利华,潘建峰,倪敬,等. 压铸铝合金用铣刀表面微织构及切削特性研究[J]. 上海交通大学学报,2021,55(6):750-756. HE Lihua,PAN Jianfeng,NI Jing,et al. Surface micro-texture and cutting characteristics of milling cutter for die casting aluminum alloy[J]. Journal of Shanghai Jiaotong University,2021,55(6):750-756. [62] 谢国广. 纳米润滑介质下微织构刀具的切削性能研究[D]. 湘潭:湘潭大学,2020. XIE Guoguang. Research on the cutting performance of micro-textured tools under nano-lubricating medium[D]. Xiangtan:Xiangtan University,2020. [63] 林国志,梁良. 表面微织构对WC-8Co在往复摩擦磨损中黏结-扩散磨损特性的影响[J]. 摩擦学学报,2021,41(5):657-668. LIN Guozhi,LIANG Liang. The effect of surface micro-texture on the bond-diffusion wear characteristics of WC-8Co in reciprocating friction and wear[J]. Acta Tribology,2021,41(5):657-668. [64] TONG X,HAN P,YANG S C. Coating and micro-texture techniques for cutting tools[J]. Journal of Materials Science,2022,57(36):17052-17104. [65] DINESH S,SENTHILKUMAR V,ASOKAN P. Experimental studies on the cryogenic machining of biodegradable ZK60 Mg alloy using micro-textured tools[J]. Materials and Manufacturing Processes,2017,32(9):979-987. [66] GAJRANI K K,SURESH S,SANKAR M R. Environmental friendly hard machining performance of uncoated and MoS2coated mechanical micro-textured tungsten carbide cutting tools[J]. Tribology International,2018,125:141-155. [67] ORRA K,CHOUDHURY S K. Tribological aspects of various geometrically shaped micro-textures on cutting insert to improve tool life in hard turning process[J]. Journal of Manufacturing Processes,2018,31:502-513. [68] SHAFAHAT A,SAID A,SALMAN P. Predicting cutting force and primary shear behavior in micro-textured tools assisted machining of AISI 630:numerical modeling and taguchi analysis[J]. Micromachines,2022,13(1):91-91. [69] PATEL K V,JAROSZ K,ÖZEL T. Physics-based simulations of chip flow over micro-textured cutting tool in orthogonal cutting of alloy steel[J]. Journal of Manufacturing and Materials Processing,2021,5(3):65-65. [70] PATEL K,LIU G L,SHAH S R,et al. Effect of micro-textured tool parameters on forces,stresses,wear rate,and variable friction in titanium alloy machining[J]. Journal of Manufacturing Science and Engineering,2020,142(2):1-31. [71] GE D L,Deng J X,DUAN R,et al. Effect of micro-textures on cutting fluid lubrication of cemented carbide tools[J]. The International Journal of Advanced Manufacturing Technology,2019,103(9-12):3887-3899. [72] 刘亚运. 微织构刀具干切削陶瓷生坯的关键技术及机理研究[D]. 济南:山东大学,2020. LIU Yayun. Research on the key technology and mechanism of dry cutting ceramic green with micro textured tools[D]. Jinan:Shandong University,2020. [73] 杨泽檀. 组合微织构刀具切削性能研究[D]. 镇江:江苏大学,2021. YANG Zetan. Study on the cutting performance of combined micro-texture tools[D]. Zhenjiang:Jiangsu University,2021,80-90. [74] THOMAS J S,KALAICHELVAN K. Comparative study of the effect of surface texturing on cutting tool in dry cutting[J]. Materials and Manufacturing Processes,2018,33(6):683-694. [75] PAUL B S,NEKOUIE E R,ANETA C M,et al. On the tribological and machining performance of laser textured sintered carbide cutting tools in turning of Al2024[J]. Procedia CIRP,2022,108:358-361. [76] 刘伟,刘顺,梁桂强,等. 微织构刀具切削性能及减摩效果的仿真分析[J]. 表面技术,2022,51(2):338-346. LIU Wei,LIU Shun,LIANG Guiqiang,et al. Simulation analysis of cutting performance and antifriction effect of micro texture tools[J]. Surface Technology,2022,51(2):338-346 [77] 屠春娟,郭旭红,郭大林,等. 不同形貌微织构自润滑陶瓷刀具切削性能的对比[J]. 机械工程材料,2018,42(11):47-51,57. TU Chunjuan,GUO Xuhong,GUO Dalin,et al. Comparison of the cutting performance of self-lubricating ceramic tools with different morphologies and micro-textures[J]. Materials for Mechanical Engineering,2018,42(11):47-51,57. [78] NIKETH S,SAMUEL G L. Drilling performance of micro textured tools under dry,wet and MQL condition[J]. Journal of Manufacturing Processes,2018,32:254-268. [79] STOETERAU R L,ANDRESA J,MALLMAN.G. Analysis of dimple textured surfaces on cutting tools[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering,2017,39(10):3989-3996. [80] 张娜. 微织构刀具设计制造及切削钛合金性能研究[D].青岛:青岛理工大学,2019. ZHANG Na. Research on the design,manufacture and cutting performance of micro-textured Tools[D]. Qingdao:Qingdao University of Technology,2019. [81] 李斌斌,陈领,赵武,等. 微织构刀具织构参数优化仿真研究[J]. 现代制造工程,2020(10):91-96. LI Binbin,CHEN Ling,ZHAO Wu,et al. Study on optimization simulation of texture parameters of micro-textured tools[J]. Modern Manufacturing Engineering,2020(10):91-96. [82] ZHANG S,ZONG W J. Micro defects on diamond tool cutting edge affecting the ductile-mode machining of KDP crystal[J]. Micromachines,2020,11(12):1102. [83] DAI X,ZHUANG K J,HAN D. A systemic investigation of tool edge geometries and cutting parameters on cutting forces in turning of Inconel 718[J]. The International Journal of Advanced Manufacturing Technology,2019,105(1-4):531-543. [84] 赵倩,赖志伟,刘小杰,等. 刀具刃口钝化对刀具切削性能影响研究进展[J]. 硬质合金,2020,37(5):378-389. ZHAO Qian,LAI Zhiwei,LIU Xiaojie,et al. Research progress on the effect of tool edge passivation on tool cutting performance[J]. Cemented Carbide,2020,37(5):378-389. [85] 汪浩. 硬质合金刀具刃口钝化方法的研究[D]. 宁波:宁波大学,2012. WANG Hao. Research on the passivation method of cemented carbide cutting edge[D]. Ningbo:Ningbo University,2012. [86] DENKENA B,BIERMANN D. Cutting edge geometries[J]. CIRP Annals-Manufacturing Technology,2014,63(2):631-653. [87] DENKENA B,KÖHLER J,VENTURA C E H. Customized cutting edge preparation by means of grinding[J]. Precision Engineering,2013,37(3):590-598. [88] CARLOS J C R.Cutting edge preparation of precision cutting tools by applying micro-abrasive jet machining and brushing[M]. Kassel:Kassel University Press,2009. [89] WYEN C F,WEGENER K. Influence of cutting edge radius on cutting forces in machining titanium[J]. CIRP Annals-Manufacturing Technology,2010,59(1):93-96. [90] YUSSEFIAN N Z,KOSHY P. Parametric characterization of the geometry of honed cutting edges[J]. Precision Engineering,2013,37(3):746-752. [91] 邱长政. 渐变倒棱强化PCBN刀具切削性能研究[D].哈尔滨:哈尔滨理工大学,2017. QIU Changzheng. Research on the cutting performance of PCBN tools strengthened by gradual chamfering[D]. Harbin:Harbin University of Science and Technology,2017. [92] 陈涛,王道源,李素燕,等. 渐变倒棱PCBN刀具设计制造及磨削精度检测[J]. 机械工程学报,2018,54(11):214-221. CHEN Tao,WANG Daoyuan,LI Suyan,et al. Design,manufacture and grinding accuracy detection of PCBN tool with gradient chamfering[J]. Journal of Mechanical Engineering,2018,54(11):214-221. [93] 杨勇,郭玉文. 切削刀具刃口钝化复合结构优化设计[J].机械设计与制造,2018(2):81-84. YANG Yong,GUO Yuwen. Optimized design of cutting tool edge passivation composite structure[J]. Mechanical Design and Manufacturing,2018(2):81-84. [94] 万庆丰. 微磨料水射流对涂层刀具的处理研究[D]. 成都:西华大学,2014. WAN Qingfeng. Study on the treatment of coated tools by micro abrasive water jet[D]. Chengdu:Xihua University,2014. [95] 郭永杰. 刃口负倒棱处理方法研究和设备开发[D]. 大连:大连工业大学,2018. GUO Yongjie. Research on processing method and equipment development of negative chamfer of cutting edge[D]. Dalian:Dalian University of Technology,2018. [96] KHAN S A,SOO S L,ASPINWALL D K,et al. Tool wear/life evaluation when finish turning Inconel 718 using PCBN tooling[J]. Procedia CIRP,2012,1:283-288. [97] 刘亚男. 基于微喷砂水射流技术的刀具切削刃处理工艺及其强化机理研究[D].济南:山东大学,2017. LIU Yanan. Research on cutting edge processing technology and strengthening mechanism based on micro-blasting water jet technology[D]. Jinan:Shandong University,2017. [98] 何荣跃,宋安邦,文立东,等. 磨削工艺对刀具刃口质量及寿命的影响[J]. 工具技术,2018,52(1):63-65. HE Rongyue,SONG Anbang,WEN Lidong,et al. Influence of grinding process on the quality and life of cutting edge[J]. Tool Technology,2018,52(1):63-65. [99] 赵雪峰,杜宇超,吴志鹏. 钝化参数对刀具钝化非对称刃口的影响[J]. 工具技术,2018,52(7):81-83. ZHAO Xuefeng,DU Yuchao,WU Zhipeng. Influence of passivation parameters on tool passivation asymmetric cutting edge[J]. Tool Technology,2018,52(7):81-83. [100] 刘鹏程. 基于拖曳式刃口处理的铣削刀具切削性能研究[D]. 长沙:湖南大学,2019. LIU Pengcheng. Research on cutting performance of milling tools based on drag edge treatment[D]. Changsha:Hunan University,2019. [101] 唐永亮. 硬质合金刀具旋转磨粒流精化处理机理及其应用技术研究[D]. 镇江:江苏大学,2019. TANG Yongliang. Research on the mechanism and application technology of rotary abrasive flow refining treatment for cemented carbide tools[D]. Zhenjiang:Jiangsu University,2019. [102] BERGS T,SCHNEIDER S A M,AMARA M,et al. Preparation of symmetrical and asymmetrical cutting edges on solid cutting tools using brushing tools with filament-integrated diamond grits[J]. Procedia CIRP,2020,93:873-878. [103] VOPÁT T,PODHORSKÝ Š,SAHUAL M,et al. Cutting edge preparation of cutting tools using plasma discharges in electrolyte[J]. Journal of Manufacturing Processes,2019,46:234-240. [104] ZIMMERMANN M,KIRSCH B,KANG Y Y,et al. Influence of the laser parameters on the cutting edge preparation and the performance of cemented carbide indexable inserts[J]. Journal of Manufacturing Processes,2020,58:845-856. [105] VOZÁR M,PÄTOPRSTÝ B,PETERKA J,et al. Influence of drag finishing parameters on the cutting edge radius of solid carbide mills[J]. IOP Conference Series:Materials Science and Engineering,2020,749:012027-012027. [106] 李瑞,李银燕. 磨粒对刀具刃口钝化影响[J]. 现代机械,2017(1):26-29. LI Rui,LI Yinyan. Influence of abrasive particles on passivation of cutting edge[J]. Modern Machinery,2017(1):26-29. [107] 陆斌,陈润泽,宋树权. 硬旋铣PCBN刀具刃口钝化试验研究[J]. 机械设计与制造,2020(12):100-102. LU Bin,CHEN Runze,SONG Shuquan. Experimental research on edge passivation of PCBN tool in hard rotary milling[J]. Mechanical Design and Manufacturing,2020(12):100-102. [108] PETER P,BORIS P,TOMÁŠ V,et al. Cutting edge radius preparation[J]. Materials Today:Proceedings,2020,22:212-218. [109] 邹一岚. 平头立铣刀超声振动钝化关键技术研究[D]. 杭州:浙江工业大学,2019. ZOU Yilan. Research on key technologies of ultrasonic vibration passivation for flat end mills[D]. Hangzhou:Zhejiang University of Technology,2019. [110] 宿好阳. 硬质合金刀具磨料电解刃口钝化工艺的实验研究[D]. 大连:大连工业大学,2016. SU Haoyang. Experimental research on the passivation process of abrasive electrolytic cutting edge of cemented carbide cutting tools[D]. Dalian:Dalian University of Technology,2016. [111] 国新月. 天然金刚石刀具的刃口机械钝化技术[D]. 哈尔滨:哈尔滨工业大学,2018. GUO Xinyue. Edge mechanical passivation technology of natural diamond cutting tools[D]. Harbin:Harbin Institute of Technology,2018. [112] 徐微. 高速铣削淬硬模具钢刀具刃口作用机理试验研究[D]. 哈尔滨:哈尔滨理工大学,2010. XU Wei. Experimental research on the action mechanism of the cutting edge of the high-speed milling hardened die steel tool[D]. Harbin:Harbin University of Science and Technology,2010. [113] 宋树权.大型滚珠丝杠硬旋铣刀具刃口表征及评价技术研究[D]. 南京:南京航空航天大学,2018. SONG Shuquan. Research on edge characterization and evaluation technology of large ball screw hard milling cutter[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2018. [114] LI Y,CHENG X,ZHENG G M,et al. Investigation on the size effect in micro end milling considering the cutting edge radius and the workpiece material[J]. Mechanical Sciences,2021,12(1):487-499. [115] AREFIN S,ZHANG X Q,NEO D W K,et al. Effects of cutting edge radius in vibration assisted micro machining[J]. International Journal of Mechanical Sciences,2021,208:106673-106674. [116] ZHAO X F,YANG Y,HE L,et al. Experiment and modeling of milling force based on tool edge preparation[J]. Experimental Techniques,2021,46:761-773. [117] 刘贺轩,李铸宇,张伟,等. 负倒棱与圆弧刃口钝化的钻削性能试验研究[J]. 工具技术,2019,53(5):42-45. LIU Hexuan,LI Zhuyu,ZHANG Wei,et al. Experimental study on drilling performance of negative chamfer and arc edge passivation[J]. Tool Technology,2019,53(5):42-45. [118] YEN Y C,JAIN A,ALTAN T. A finite element analysis of orthogonal machining using different tool edge geometries[J]. Journal of Materials Processing Tech.,2004,146(1):72-81. [119] BEREND D,ALEXANDER K,ARND H. Numerical and experimental analysis of thermal and mechanical tool load when turning AISI 52100 with ground cutting edge microgeometries[J]. CIRP Journal of Manufacturing Science and Technology,2021,35:494-501. [120] 沈琦. 刀具刃口几何参数对GH4169加工残余应力影响的研究[D]. 济南:山东大学,2019. SHEN Qi. Research on the influence of tool edge geometric parameters on GH4169 machining residual stress[D]. Jinan:Shandong University,2019. [121] PADMAKUMAR M,SHIVA P N. Effect of cutting edge form factor (K-factor) on the performance of a face milling tool[J]. CIRP Journal of Manufacturing Science and Technology,2020,31:305-313. [122] BERNARD S E,SELVAGANESH R,KHOSHICK G,et al. A novel contact area based analysis to study the thermos-mechanical effect of cutting edge radius using numerical and multi-sensor experimental investigation in turning[J]. Journal of Materials Processing Technology,2021,293:117085-117086. [123] USAMA U,ABDULRAHMAN A A. 3D modeling of tool wear and optimization in hard turning considering the effects of tool cutting edge and nose radii[J]. The International Journal of Advanced Manufacturing Technology,2021,118(5-6):1919-1932. [124] MALEKAN M,BLOCH-JENSEN C D,ZOLBIN M A,et al. Cutting edge wear in high-speed stainless steel end milling[J]. The International Journal of Advanced Manufacturing Technology,2021,114:2911-2928. [125] LV D J,WANG Y G,YU X. Effects of cutting edge radius on cutting force,tool wear,and life in milling of SUS-316L steel[J]. The International Journal of Advanced Manufacturing Technology,2020,111:2833-2844. [126] 李福稼. GH4169断续车削刀具刃口负倒棱结构及切削工艺优化研究[D]. 天津:天津大学,2018. LI Fujia. Research on the negative chamfer structure and cutting process optimization of GH4169 intermittent turning tool edge[D]. Tianjin:Tianjin University,2018. [127] 魏子洋,石广丰,史国权,等. 车刀双倒棱结构切削效应的仿真分析[J]. 制造技术与机床,2022(3):40-43. WEI Ziyang,SHI Guangfeng,SHI Guoquan,et al. Simulation analysis on cutting effect of double chamfer structure of turning tool[J]. Manufacturing Technology and Machine Tool,2022(3):40-43. [128] KARPAT Y. Influence of diamond tool chamfer angle on surface integrity in ultra-precision turning of singe crystal silicon[J]. The International Journal of Advanced Manufacturing Technology,2019,101(5):1565-1572. [129] KOUROSH T,INGE S. Effect of chamfer width and chamfer angle on tool wear in slot milling[J]. The International Journal of Advanced Manufacturing Technology,2022,120:2923-2935. [130] FAISAL H,VELDI K,KALIDASAN R,et al. Numerical analysis of surface integrity in parallel turning PART B:Influence of cutting tool chamfer angle and chamfer width[J]. Materials Today:Proceedings,2020,44(1):266-270. [131] PADMAKUMAR M,KUMAR N S. Experimental investigation on the effect of different micro-geometries on cutting edge and wiper edge on surface roughness and forces in face milling[J]. Lubricants,2021,9(10):102-102. [132] 杨勇,郭玉文. 切削刀具刃口钝化复合结构优化设计[J]. 机械设计与制造,2018(2):81-84. YANG Yong,GUO Yuwen. Optimization design of cutting tool edge passivation composite structure[J]. Mechanical Design and Manufacturing,2018(2):81-84. [133] HUA J,SHIVPURI R,CHENG X M,et al. Effect of feed rate,workpiece hardness and cutting edge on subsurface residual stress in the hard turning of bearing steel using chamfer+hone cutting edge geometry[J]. Materials Science & Engineering A,2004,394(1):238-248. [134] 王天娇. 刃口作用下变分布密度微织构球头铣刀切削性能研究[D]. 哈尔滨:哈尔滨理工大学,2021. WANG Tianjiao. Research on the cutting performance of micro-textured ball end milling cutter with variable distribution density under the action of cutting edge[D]. Harbin:Harbin University of Science and Technology,2021. [135] 王贤良. 球头铣刀介观几何特征对钛合金铣削行为影响研究[D]. 哈尔滨:哈尔滨理工大学,2020. WANG Xianliang. Research on the influence of mesoscopic geometric characteristics of ball end milling cutter on milling behavior of titanium alloy[D]. Harbin:Harbin University of Science and Technology,2020. [136] 孙健焜. 刀具介观几何特征对钛合金铣削表面完整性影响研究[D]. 哈尔滨:哈尔滨理工大学,2021. SUN Jiankun. Research on the influence of tool mesoscopic geometric features on the surface integrity of titanium alloy milling[D]. Harbin:Harbin University of Science and Technology,2021. [137] 邢佑强,邓建新,冯秀亭,等. 微纳复合织构自润滑陶瓷刀具的制备及切削性能[J]. 航空制造技术,2013(6):42-46. XING Youqiang,DENG Jianxin,FENG Xiuting,et al. Preparation and cutting performance of micro nano composite texture self-lubricating ceramic tools[J]. Aerospace Manufacturing Technology,2013(6):42-46. [138] CARLOS A A L,ALEXANDRE M A,LINCOLN C B,et al. Chamfer texturing of tungsten carbide inserts applied to turning of grey cast iron[J]. The International Journal of Advanced Manufacturing Technology,2019,104(9-12):4655-4664. |
[1] | FENG Bohua, LUAN Zhiqiang, ZHANG Ruochong, XIA Yu, YAO Weiqiang, HU Xiaodong, XU Xuefeng. Experimental Study on Influence Mechanism of Electroosmotic Effect on the Penetration and Lubrication of Water-based Cutting Fluid at Tool-chip Interface [J]. Journal of Mechanical Engineering, 2023, 59(9): 320-334. |
[2] | LI Mingxing, YUE Caixu, LIU Xianli, CHEN Zhitao, JIANG Zhipeng, YUE Daxun, STEVEN Y L. Research on Design and Application of Endmill for Milling Titanium Alloy Frame Parts [J]. Journal of Mechanical Engineering, 2023, 59(23): 283-309. |
[3] | SHAN Zhongde, ZHOU Zhengxi, SUN Zheng, HUANG Hao, LIU Yang. Research of 3D Advanced Aerospace Composite Preforms Forming Technology and Equipment [J]. Journal of Mechanical Engineering, 2023, 59(20): 64-79. |
[4] | LI Xinyue, LI Jian, ZHANG Jiankang, LIN Panpan, LIN Tiesong, HE Peng. Research on the Process and Mechanism of Reactive Air Brazing of Al2O3Ceramics with AgCu28-B2O3 Filler [J]. Journal of Mechanical Engineering, 2023, 59(10): 48-55. |
[5] | CHENG Cheng, HUANG Zushu, HAN Cong, BAI Xueshan, MA Ziqi, XU Yong, HE Zirui, GUO Xunzhong. State-of-art of Flexible Forming Technology Based on Three-dimensional Trajectory Control [J]. Journal of Mechanical Engineering, 2022, 58(16): 160-177. |
[6] | LIAN Yunsong, XIE Chaoping, ZHOU Wei, CHU Xuyang, ZHAO Guolong. Performance Research on Bionic Tools Based on Surface Microstructures of Blood Clams in Dry Cutting of GH4169 [J]. Journal of Mechanical Engineering, 2021, 57(13): 242-251. |
[7] | GUO Jiang, WANG Xingyu, ZHAO Yong, XU Yongbo, CUI Hailong, WEI Zhaocheng, JIN Zhuji, KANG Renke. Recent Progress on Fabrication Technologies and Machining Performance of Textured Cutting Tools [J]. Journal of Mechanical Engineering, 2021, 57(13): 172-200. |
[8] | CAI Fei, GAO Ying, CAI Xijun, ZHANG Lin, ZHANG Shihong, WANG Qimin. Study on Preparation and Properties of Gradient AlCrTiSiN Coated Cemented Carbide Tools Deposited by Ion Source Enhanced Multi-arc Ion Plating Technology [J]. Journal of Mechanical Engineering, 2019, 55(19): 213-220. |
[9] | LÜ Tao, HUANG Shuiquan, HU Xiaodong, FENG Bohua, XU Xuefeng. Study on Aerosol Characteristics of Electrostatic Minimum Quantity Lubrication and Its Turning Performance [J]. Journal of Mechanical Engineering, 2019, 55(1): 129-138. |
[10] | YUAN Xiaoming, ZOU Yida, ZONG Xuemei, YAN Peng, ZHANG Lijie. Research on Cutting Performance of Cutting Header on Part-face Roadheader [J]. Journal of Mechanical Engineering, 2017, 53(24): 193-200. |
[11] | ZHANG Shihong, MAO Taojie, FANG Wei, CAI Fei, WANG Qimin, ZHANG Tengfei. Effects of High-energy Ion Source Cleaning Technology on the Microstructure and Mechanical Properties of AlCrN Coatings [J]. Journal of Mechanical Engineering, 2017, 53(24): 34-41. |
[12] | MAO Cong, LU Ji, LIANG Chang, ZHANG Mingjun, HU Yongle. Cutting Performance of Single cBN-WC-10Co Fiber [J]. Journal of Mechanical Engineering, 2017, 53(15): 188-200. |
[13] | FANG Zeping, LIU Zhibing, HE Lilun, WANG Xibin, JIAO Li. Design and Manufacture of a New Micro Ball End Milling with Helical Cylindrical Structure [J]. Journal of Mechanical Engineering, 2015, 51(21): 185-190. |
[14] | XU Binshi;DONG Shiyun;ZHU Sheng;SHI Peijing. Prospects and Developing of Remanufacture Forming Technology [J]. , 2012, 48(15): 96-105. |
[15] | LIU Xiaojian;YU Tao. ABRASIVE SUSPENSION JET TECHNOLOGY AND EXPERIMENTAL STUDY ON CUTTING PERFORMANCE [J]. , 2006, 42(4): 157-160. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||