[1] SORENSEN T C, SPUDIS P D. The clementine mission-A 10-year perspective[J]. Journal of Earth System Science, 2005, 114(6):645-668. [2] SPUDIS P D, BUSSEY D B J, BALOGA S M, et al. Evidence for water ice on the moon:Results for anomalous polar craters from the LRO mini-RF imaging radar[J]. Journal of Geophysical Research:Planets, 2013, 118(10):2016-2029. [3] LAWRENCE D J, EKE V R, ELPHIC R C, et al. Technical comment on "Hydrogen mapping of the lunar South Pole using the LRO neutron detector experiment LEND"[J]. Science, 2011, 334(6059):483-486. [4] COLAPRETE A, SCHULTZ P, HELDMANN J, et al. Detection of water in the LCROSS ejecta plume[J]. Science, 2010, 330(6003):463-468. [5] LI S, LUCEY P G, MILLIKEN R E, et al. Direct evidence of surface exposed water ice in the lunar polar regions[J]. Proceedings of the National Academy of Sciences, 2018, 115(36):8907-8912. [6] ZHOU Chuanjiao, TANG Hong, LI Xiongyao, et al. Chang'E-5 samples reveal high water content in lunar minerals[J]. Nature Communications, 2022, 13:5336. [7] 姜生元, 梁杰能, 赖小明, 等.嫦娥五号月壤剖面钻进取芯状态分析与解译[J].机械工程学报, 2022, 58(10):348-360. JIANG Shengyuan, LIANG Jieneng, LAI Xiaoming, et al. Analysis on drilling and coring process and Lunar regolith stratification state interpretation in Chang'E-5[J]. Journal of Mechanical Engineering, 2022, 58(10):348-360. [8] REID E, ILES P, MUISE J, et al. The Artemis Jr. rover:Mobility platform for lunar ISRU mission simulation[J]. Advances in Space Research, 2015, 55(10):2472-2483. [9] 魏广飞.月球极区--水资源的天然储库[J].大众科学, 2019(1):48-49. WEI Guangfei. Lunar polar region-A natural reservoir of water resources[J]. China Public Science, 2019(1):48-49. [10] 杜宇, 盛丽艳, 张熇, 等.月球水冰赋存形态分析及原位探测展望[J].航天器环境工程, 2019, 36(6):607-614. DU Yu, SHENG Liyan, ZHANG He, et al. Analysis of the occurrence mode of water ice on the moon and the prospect of in-situ lunar exploration[J]. Spacecraft Environment Engineering, 2019, 36(6):607-614. [11] 贾瑛卓, 覃朗, 徐琳, 等.月球水冰探测[J].深空探测学报(中英文), 2020, 7(3):290-296. JIA Yingzhuo, QIN Lang, XU Lin, et al. Lunar water-ice exploration[J]. Journal of Deep Space Exploration, 2020, 7(3):290-296. [12] REISS P, GRILL L, BARBER S J. Thermal extraction of volatiles from the lunar regolith simulant NU-LHT-2M:Preparations for in-situ analyses on the Moon[J]. Planetary and Space Science, 2019, 175:41-51. [13] SORIANO-DISLA J M, JANIK L J, VISCARRA-ROSSEL R A, et al. The performance of visible, near-, and mid-infrared reflectance spectroscopy for prediction of soil physical, chemical, and biological properties[J]. Applied Spectroscopy Reviews, 2014, 49(2):139-186. [14] JAYAWARDANE N S, MEYER W, BARRS H D. Moisture measurement in a swelling clay soil using neutron moisture meters[J]. Australian Journal of Soil Research, 1984, 22(2):109-117. [15] 王瑞刚, 苏彦, 洪天晟, 等.表层穿透雷达在月球和深空探测中的应用[J].天文研究与技术, 2020, 17(4):492-512. WANG Ruigang, SU Yan, HONG Tiansheng, et al. A review of application of surface penetrating radar in the moon and deep-space exploration[J]. Astronomical Research and Technology, 2020, 17(4):492-512. [16] SUSHA-LEKSHMI S U, SINGH D N, BAGHINI M S. A critical review of soil moisture measurement[J]. Measurement, 2014, 54:92-105. [17] LIEBE H J, HUFFORD G A, MANABE T. A model for the complex permittivity of water at frequencies below 1 THz[J]. International Journal of Infrared and Millimeter Waves, 1991, 12(7):659-675. [18] HENDRICKX J M H, VAN DAM R L, BORCHERS B, et al. Worldwide distribution of soil dielectric and thermal properties[C]//Detection and Remediation Technologies for Mines and Minelike Targets VIII. Orlando, Florida, United States:SPIE, 2003:1158-1168. [19] PICARDI G, BICCARI D, SEU R, et al. Performance and surface scattering models for the Mars advanced radar for subsurface and ionosphere sounding (MARSIS)[J]. Planetary and Space Science, 2004, 52(1/3):149-156. [20] PLAUT J J, PICARDI G, SAFAEINILI A, et al. Subsurface radar sounding of the south polar layered deposits of Mars[J]. Science, 2007, 316(5821):92-95. [21] GRARD R, HAMELIN M, LÓPEZ-MORENO J J, et al. Electric properties and related physical characteristics of the atmosphere and surface of Titan[J]. Planetary and Space Science, 2006, 54(12):1124-1136. [22] LETHUILLIER A, LE-GALL A, HAMELIN M, et al. Electrical properties and porosity of the first meter of the nucleus of 67P/Churyumov-Gerasimenko[J]. Astronomy & Astrophysics, 2016, 591:A32. [23] Zent A P, HECHT M H, COBOS D R, et al. Thermal and electrical conductivity probe (TECP) for Phoenix[J]. Journal of Geophysical Research, 2009, 114(E3):003052. [24] MATTEI E, LAURO S E, VANNARONI G, et al. Dielectric measurements and radar attenuation estimation of ice/basalt sand mixtures as martian Polar Caps analogues[J]. Icarus, 2014, 229:428-433. [25] HEIKEN G. Lunar sourcebook-A user's guide to the moon[M]. Cambridge:Cambridge University Press, 1991. [26] DEBYE P. Polare molekeln[M]. Leipzig:Verlag von S. Hirzel, 1929. [27] KHAMZIN A A, NASYBULLIN A I, NIKITIN A S. Theoretical description of dielectric relaxation of ice with low concentration impurities[J]. Chemical Physics, 2021, 541(15):1-8. [28] FUJITA S, MATSUOKA T, ISHIDA T, et al. A summary of the complex dielectric permittivity of ice in the megahertz range and its applications for radar sounding of polar ice sheets[C/CD]//International Symposium on Physics of Ice Core Records. Shikotsukohan, Hokkaido, Japan, September 14-17, 1998. [29] SIHVOLA A. Mixing rules with complex dielectric coefficients[J]. Subsurface Sensing Technologies and Applications, 2000, 1(4):393-415. |