[1] BRUZZONE A, COSTA H LONARDO P, et al. Advances in engineered surfaces for functional performance[J]. CIRP Annals, 2008, 57(2):750-769. [2] FANG F Z, ZHANG X D, WECKENMANN A, et al. Manufacturing and measurement of freeform optics[J]. CIRP Annals, 2013, 62(2):823-846. [3] ZHU L, LI Z, FANG F, et al. Review on fast tool servo machining of optical freeform surfaces[J]. International Journal of Advanced Manufacturing Technology, 2018, 95(5-8):2071-2092. [4] GAO W, ARAKI T, KIYONO S, et al. Precision nano-fabrication and evaluation of a large area sinusoidal grid surface for a surface encoder[J]. Precision Engineering, 2003, 27(3):289-298. [5] KIM H S, KIM E J. Feed-forward control of fast tool servo for real-time correction of spindle error in diamond turning of flat surfaces[J]. International Journal of Machine Tools and Manufacture, 2003, 43(12):1177- 1183. [6] 房丰洲,陈晓菲,张效栋,等. 基于自抗扰控制算法的麦克斯韦快刀伺服控制系统[J]. 纳米技术与精密工程, 2017, 15(5):335-341. FANG Fengzhou, CHEN Xiaofei, ZHANG Xiaodong, et al. Development of fast tool servo control system based on maxwell normal force using ADRC algorithm[J]. Nanotechnology and Precision Engineering, 2017, 15(5):335-341. [7] WU D, CHEN K. Design and analysis of precision active disturbance rejection control for noncircular turning process[J]. IEEE Transactions on Industrial Electronics, 2009, 56(7):2746-2753. [8] ZHU W L, YANG X, DUAN F, et al. Design and adaptive terminal sliding mode control of a fast tool servo system for diamond machining of freeform surfaces[J]. IEEE Transactions on Industrial Electronics, 2019, 66(6):4912-4922. [9] ZHU Z, CHEN L, HUANG P, et al. Design and control of a piezoelectrically actuated fast tool servo for diamond turning of microstructured surfaces[J]. IEEE Transactions on Industrial Electronics, 2020, 67(8):6688-6697. [10] FANG Y, PU X, TO S, et al. Normal-stressed electromagnetic triaxial fast tool servo for micro-cutting[J]. IEEE Transactions on Industrial Electronics, 2023, 70(7):7131-7140. [11] LU X D, TRUMPER D L. Ultrafast tool servos for diamond turning[J]. CIRP Annals, 2005, 54(1):383-388. [12] CRUDELE M, KURFESS T R. Implementation of a fast tool servo with repetitive control for diamond turning[J]. Mechatronics, 2003, 13(3):243-257. [13] MA H, TIAN J, HU D. Development of a fast tool servo in noncircular turning and its control[J]. Mechanical Systems and Signal Processing, 2013, 41(1-2):705-713. [14] LI C X, GU G Y, YANG M J, et al. High-speed tracking of a nanopositioning stage using modified repetitive control[J]. IEEE Transactions on Automation Science and Engineering, 2017, 14(3):1467-1477. [15] CHEN X, TOMIZUKA M. New repetitive control with improved steady-state performance and accelerated transient[J]. IEEE Transactions on Control Systems Technology, 2014, 22(2):664-675. [16] HUANG W W, LI L, ZHU Z, et al. Modeling, design and control of normal-stressed electromagnetic actuated fast tool servos[J]. Mechanical Systems and Signal Processing, 2022, 178:109304. [17] HUANG W W, GUO P, HU C, et al. High-performance control of fast tool servos with robust disturbance observer and modified H∞ control[J]. Mechatronics, 2022, 84:102781. [18] TOMIZUKA M. Zero phase error tracking algorithm for digital control[J]. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 1987, 109(4):349-354. [19] LI M, ZHU Y, YANG K, et al. An integrated model-data-based zero-phase error tracking feedforward control strategy with application to an ultraprecision wafer stage[J]. IEEE Transactions on Industrial Electronics, 2016, 64(5):4139-4149. [20] HU C, OU T, CHANG H, et al. Deep GRU neural network prediction and feedforward compensation for precision multiaxis motion control systems[J]. IEEE/ASME Transactions on Mechatronics, 2020, 25(3):1377-1388. [21] ZHANG X, FANG F, YU L, et al. Slow slide servo turning of compound eye lens[J]. Optical Engineering, 2013, 52(2):023401. |