Journal of Mechanical Engineering ›› 2023, Vol. 59 ›› Issue (15): 216-231.doi: 10.3901/JME.2023.15.216
Previous Articles Next Articles
MEI Xuesong1,2,3, SUN Tao1,2,3, ZHAO Wanqin1,2,3, FAN Zhengjie1,2,3, ZHANG Tao1,2,3, TANG Cheng1,2,3, CUI Jianlei1,2,3, WANG Wenjun1,2,3
Received:
2022-11-09
Revised:
2023-04-24
Online:
2023-08-05
Published:
2023-09-27
CLC Number:
MEI Xuesong, SUN Tao, ZHAO Wanqin, FAN Zhengjie, ZHANG Tao, TANG Cheng, CUI Jianlei, WANG Wenjun. Recent Advances of Optical Coherence Tomography Technology in Real-time Monitoring and Control of Laser Processing[J]. Journal of Mechanical Engineering, 2023, 59(15): 216-231.
[1] MAIMAN T H. Stimulated optical radiation in ruby[J]. Nature,1960,187:493-497. [2] WU Di,ZHANG Peilei,YU Zhishui,et al. Progress and perspectives of in-situ optical monitoring in laser beam welding:Sensing,characterization and modeling[J]. Journal of Manufacturing Processes,2022,75:767-791. [3] DUAN Wenqiang,MEI Xuesong,FAN Zhengjie,et al. Removal of recast layer in the laser drilled film cooling holes by a two-step inner streaming electrochemical technique[J]. Journal of Micromechanics and Microengineering,2021,31(7):075006. [4] 姜澜,胡洁,王国燕,等. 电子动态调控超快激光微纳制造[J]. 中国基础科学,2016,18(705):11-27. JIANG Lan,HU jie,WANG Guoyan,et al.Ultrafast laser micro/nano fabrication based on electrons dynamics control[J]. China Basic Science,2016,18(705):11-27. [5] ZHANG Yiming,ITO Y,SUN Huijun,et al. Investigation of multi-timescale processing phenomena in femtosecond laser drilling of zirconia ceramics[J]. Optics Express,2022,30(21):37394-406. [6] ZHANG Jiaqi,YUAN Songmei,WEI Jiayong,et al. Spatio-temporal multi-scale observation of the evolution mechanism during millisecond laser ablation of SiCf/SiC[J]. Ceramics International,2022,48(16):23885-96. [7] SUN Tao,MEI Xuesong,SUN Xiaomao,et al. Real-time monitoring and control of the breakthrough stage in ultrafast laser drilling based on sequential three-way decision[J]. IEEE Transactions on Industrial Informatics,2022,19(4):5422-32. [8] WANG Rujia,WANG Kedian,DONG Xia,et al. An experimental investigation into the defects of laser-drilled holes in thermal barrier coated Inconel 718 superalloys[J]. The International Journal of Advanced Manufacturing Technology,2018,96(1-4):1467-81. [9] YEUNG H,KIM F H,DONMEZ M A,et al. Keyhole pores reduction in laser powder bed fusion additive manufacturing of nickel alloy 625[J]. International Journal of Machine Tools and Manufacture,2022,183:103957. [10] 丁烨,薛遥,庞继红,等. 激光加工在线监测技术研究进展[J]. 中国科学:物理学 力学 天文学,2019,49(4):60-78. DING Ye,XUE Yao,PANG Jihong,et al. Advances in in-situ monitoring technology for laser processing[J]. Sci Sin-Phys Mech Astron,2019,49(4):60-78. [11] 曹龙超,周奇,韩远飞,等. 激光选区熔化增材制造缺陷智能监测与过程控制综述[J]. 航空学报,2021,42(10):199-233. CAO Longchao,ZHOU Qi,HAN Yuanfei,et al. Review on intelligent monitoring of defects and process control of selective laser melting additive manufacturing[J]. Acta Aeronautica et Astronautica Sinica,42(10):199-233. [12] KONG Lingbao,PENG Xing,CHEN Yao,et al. Multi-sensor measurement and data fusion technology for manufacturing process monitoring:A literature review[J]. International Journal of Extreme Manufacturing,2020,2(2):022001. [13] SING S L,KUO C N,SHIH C T,et al. Perspectives of using machine learning in laser powder bed fusion for metal additive manufacturing[J]. Virtual and Physical Prototyping,2021,16(3):372-86. [14] HUSSAIN S,MUBEEN I,ULLAH N,et al. Modern diagnostic imaging technique applications and risk factors in the medical field:A review[J]. Biomed. Res. Int.,2022,2022:5164970. [15] HEILES B,TERWIEL D,MARESCA D. The advent of biomolecular ultrasound imaging[J]. Neuroscience,2021,474:122-33. [16] LAINS I,WANG J C,CUI Ying,et al. Retinal applications of swept source optical coherence tomography (OCT) and optical coherence tomography angiography (OCTA)[J]. Prog. Retin. Eye Res.,2021,84:100951. [17] HUANG D,SWANSON E A,LIN C P,et al. Optical coherence tomography[J]. Science,1991,254(5035):1178-81. [18] DREXLER W,FUJIMOTO J G. Optical coherence tomography technology and applications[M]. Switzerland:Springer Cham,2015. [19] 李培,杨姗姗,丁志华,等. 傅里叶域光学相干层析成像技术的研究进展[J]. 中国激光,2018,45(2):153-63. LI Pei,YANG Shanshan,DING Zhihua,et al. Research progress in Fourier domain optical coherence tomography[J]. Chinese Journal of Lasers,2018,45(2):153-63. [20] CHOMA M A,SARUNIC M V,YANG C,et al. Sensitivity advantage of swept source and Fourier domain optical coherence tomography[J]. Optics Express,2003,11(18):2183-9. [21] WOJTKOWSKI M,SRINIVASAN V J,KO T H,et al. Ultrahigh-resolution,high-speed,Fourier domain optical coherence tomography and methods for dispersion compensation[J]. Optics Express,2004,12(11):2404-22. [22] YASUNO Y,MADJAROVA V D,MAKITA S,et al. Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments[J]. Optics Express,2005,13(26):10652-64. [23] 靖志成,胡建明,郭袁俊. 光学相干层析成像的原理、应用与发展[J]. 重庆师范大学学报,2021,38(4):107-120. JING Zhicheng,HU Jianming,GUO Yuanjun. The principle,application and development of optical coherence tomography[J]. Journal of Chongqing Normal University,2021,38(4):107-120. [24] BUNAZIV I,AKSELSEN O M,REN X,et al. Laser beam and laser-arc hybrid welding of aluminium alloys[J]. Metals,2021,11(8):1150. [25] WANG Zhiming,OLIVEIRA J P,ZENG Zhi,et al. Laser beam oscillating welding of 5A06 aluminum alloys:Microstructure,porosity and mechanical properties[J]. Optics & Laser Technology,2019,111:58-65. [26] YUSOF M F M,ISHAK M,GHAZALI M F. Classification of weld penetration condition through synchrosqueezed-wavelet analysis of sound signal acquired from pulse mode laser welding process[J]. Journal of Materials Processing Technology,2020,279:116559. [27] ZHANG Zhehao,LI Bin,ZHANG Weifeng,et al. Real-time penetration state monitoring using convolutional neural network for laser welding of tailor rolled blanks[J]. Journal of Manufacturing Systems,2020,54:348-60. [28] NGO A K,KOLLIAS N,SHARMA U,et al. Laser welding of urinary tissues,ex vivo,using a tunable Thulium fiber laser[C]//Proceeding of SPIE-Photonic Therapeutic and Diagnostics II. San Jose,California,United States,February 2006:60781B, [29] WEBSTER P J L,MULLER M S,FRASER J M. High speed in situ depth profiling of ultrafast micromachining[J]. Optics Express,2007,15(23):14967-72. [30] MULLER M S,WEBSTER P J L,FRASER J M. Time-gated Fourier-domain optical coherence tomography[J]. Optics Letters,2007,32(22):3336-8. [31] WEBSTER P J,WRIGHT L G,JI Y,et al. Automatic laser welding and milling with in situ inline coherent imaging[J]. Opt. Lett.,2014,39(21):6217-20. [32] BLECHER J J,GALBRAITH C M,VAN VLACK C,et al. Real time monitoring of laser beam welding keyhole depth by laser interferometry[J]. Science and Technology of Welding and Joining,2014,19(7):560-4. [33] SCHMOELLER M,STADTER C,LIEBL S,et al. Inline weld depth measurement for high brilliance laser beam sources using optical coherence tomography[J]. Journal of Laser Applications,2019,31(2):022409. [34] STADTER C,SCHMOELLER M,ZEITLER M,et al. Process control and quality assurance in remote laser beam welding by optical coherence tomography[J]. Journal of Laser Applications,2019,31(2):022408. [35] STADTER C,SCHMOELLER M,VON RHEIN L,et al. Real-time prediction of quality characteristics in laser beam welding using optical coherence tomography and machine learning[J]. Journal of Laser Applications,2020,32(2):022406. [36] SCHMOELLER M,WEISS T,GOETZ K,et al. Inline weld depth evaluation and control based on OCT keyhole depth measurement and fuzzy control[J]. Processes,2022,10(7):1422. [37] MA Deyuan,JIANG Ping,SHU Leshi,et al. Real-time porosity monitoring during laser welding of aluminum alloys based on keyhole 3D morphology characteristics[J]. Journal of Manufacturing Systems,2022,65:70-87. [38] MA D,JIANG P,SHU L,et al. Multi-sensing signals diagnosis and CNN-based detection of porosity defect during Al alloys laser welding[J]. Journal of Manufacturing Systems,2022,62:334-46. [39] 刘伟,李能,周标,等. 复杂结构与高性能材料增材制造技术进展[J]. 机械工程学报,2019,55(20):128-159. LIU Wei,LI Neng,ZHOU Biao,et al. Progress in additive manufacturing on complex structures and high-performance materials[J]. Journal of Mechanical Engineering,2019,55(20):128-159. [40] CHEN Qiang,GUILLEMOT G,GANDIN C A,et al. Three-dimensional finite element thermomechanical modeling of additive manufacturing by selective laser melting for ceramic materials[J]. Additive Manufacturing,2017,16:124-37. [41] PANWISAWAS C,TANG Y T,REED R C. Metal 3D printing as a disruptive technology for superalloys[J]. Nat Commun,2020,11(1):2327. [42] 卢秉恒. 增材制造技术——现状与未来[J]. 中国机械工程,2020,31(1):19-23. LU Bingheng. Additive manufacturing-current situation and future[J]. China Mechanical Engineering,2020,31(1):19-23. [43] NEEF A,SEYDA V,HERZOG D,et al. Low coherence interferometry in selective laser melting[J]. Physics Procedia,2014,56:82-9. [44] KANKO J A,SIBLEY A P,FRASER J M. In situ morphology-based defect detection of selective laser melting through inline coherent imaging[J]. Journal of Materials Processing Technology,2016,231:488-500. [45] FLEMING T G,NESTOR S G L,ALLEN T R,et al. Tracking and controlling the morphology evolution of 3D powder-bed fusion in situ using inline coherent imaging[J]. Additive Manufacturing,2020,32:100978. [46] HIRSCH M,PATEL R,LI W,et al. Assessing the capability of in-situ nondestructive analysis during layer based additive manufacture[J]. Additive Manufacturing,2017,13:135-42. [47] GUAN Guangying,HIRSCH M,LU Zenghai,et al. Evaluation of selective laser sintering processes by optical coherence tomography[J]. Materials & Design,2015,88:837-46. [48] GUAN Guangying,LU Zenghai,MATTHIAS H,et al. Towards in-situ process monitoring in selective laser sintering using optical coherence tomography[C]//Proceedings of SPIE-the Laser 3D Manufacturing III,San Francisco,California,United States,April 6,2016:97380Q [49] GUAN Guangying,HIRSCH M,SYAM W P,et al. Loose powder detection and surface characterization in selective laser sintering via optical coherence tomography[J]. Proc. Math. Phys. Eng. Sci.,2016,472(2191):20160201. [50] YANG Shanshan,WANG Ling,CHEN Qi,et al. In situ process monitoring and automated multi-parameter evaluation using optical coherence tomography during extrusion-based bioprinting[J]. Additive Manufacturing,2021,47:102251. [51] ZVAGELSKY R,MAYER F,BEUTEL D,et al. Towards in-situ diagnostics of multi-photon 3D laser printing using optical coherence tomography[J]. Light:Advanced Manufacturing,2022,3(2):466-480. [52] 梅雪松,杨子轩,赵万芹. 电子陶瓷基板表面激光孔加工综述[J]. 中国激光,2020,47(5):187-202. MEI Xuesong,YANG Zixuan,ZHAO Wanqin. Laser hole drilling on surface of electronic ceramic substrates[J]. Chinese Journal of Lasers,2020,47(5):187-202. [53] WANG Rujia,DONG Xia,WANG Kedian,et al. Investigation on millijoule femtosecond laser spiral drilling of micro-deep holes in thermal barrier coated alloys[J]. The International Journal of Advanced Manufacturing Technology,2021,114(3-4):857-69. [54] 翟兆阳,梅雪松,王文君,等. 碳化硅陶瓷基复合材料激光刻蚀技术研究进展[J]. 中国激光,2020,47(6):24-34. ZHAI Zhaoyang,MEI Xuesong,WANG Wenjun,et al. Research advancement on laser etching technology of silicon carbide ceramic matrix composite[J]. Chinese Journal of Lasers,2020,47(6):24-34. [55] SUN Tao,FAN Zhengjie,SUN Xiaomao,et al. Femtosecond laser drilling of film cooling holes:quantitative analysis and real-time monitoring[C]//Proceedings of the 15th International Conference on Frontiers of Design and Manufacturing,Changchun,China,Aug 17-19,2022. [56] KAMIYA M,SHIN-ICHIRO A. Real-time monitoring of processed hole depth under femtosecond laser processing[J]. The Review of Laser Engineering,2005,33(10):685-689. [57] MAHER M A,WEBSTER P J L,CHIAO J C,et al. Coaxial real-time metrology and gas assisted laser micromachining:Process development,stochastic behavior,and feedback control[C]//Proceeding of SPIE-Micromachining and Microfabrication Process Technology XV. San Francisco,California,United States,Februrary 16,2010:759003. [58] WEBSTER P J L,YU J X Z,LEUNG B Y C,et al. In situ 24 kHz coherent imaging of morphology change in laser percussion drilling[J]. Optics Letters,2010,35(5):646-8. [59] WEBSTER P J L,WRIGHT L G,MORTIMER K D,et al. Automatic real-time guidance of laser machining with inline coherent imaging[J]. Journal of Laser Applications,2011,23(2):022001. [60] LEUNG B Y,WEBSTER P J,FRASER J M,et al. Real-time guidance of thermal and ultrashort pulsed laser ablation in hard tissue using inline coherent imaging[J]. Lasers Surg. Med.,2012,44(3):249-56. [61] JI Y,VLACK C V,WEBSTER P J L,et al. Real-time depth monitoring of galvo-telecentric laser machining by inline coherent imaging[C]//CLEO:QELS_Fundamental Science. San Jose,California,United States; June 9-14,2013:2013.10.1364/CLEO_QELS.2013. JTh2A.05 [62] JI Yang,GRINDAL A W,WEBSTER P J L,et al. Real-time depth monitoring and control of laser machining through scanning beam delivery system[J]. Journal of Physics D:Applied Physics,2015,48(15):155301. [63] YIN Chenman,RUZZANTE S W,FRASER J M. Automated 3D bone ablation with 1,070 nm ytterbium-doped fiber laser enabled by inline coherent imaging[J]. Lasers Surg. Med.,2016,48(3):288-98. [64] WIESNER M,IHLEMANN J,MULLER H H,et al. Optical coherence tomography for process control of laser micromachining[J]. Rev. Sci. Instrum.,2010,81(3):033705. [65] HOLDER D,BOLEY S,BUSER M,et al. In-process determination of fiber orientation for layer accurate laser ablation of CFRP[J]. Procedia CIRP,2018,74:557-61. [66] HOLDER D,BUSER M,LEIS A,et al. High-precision laser ablation using OCT closed-loop control[C]//Proceeding of SPIE-the Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XXV. San Francisico,California,United States,March 2,2020:1126710. [67] HOLDER D,BUSER M,BOLEY S,et al. Image processing based detection of the fibre orientation during depth-controlled laser ablation of CFRP monitored by optical coherence tomography[J]. Materials & Design,2021,203:109567. [68] HOLDER D,WEBER R,GRAF T,et al. Analytical model for the depth progress of percussion drilling with ultrashort laser pulses[J]. Applied Physics A,2021,127(5):302. [69] YAMANARI M,UEMATSU S,ISHIHARA K,et al. Parallel detection of Jones-matrix elements in polarization-sensitive optical coherence tomography[J]. Biomed Opt Express,2019,10(5):2318-36. [70] SEONG D,LEE C,JEON M,et al. Doppler optical coherence tomography for otology applications:from phantom simulation to in vivo experiment[J]. Applied Sciences,2021,11(12):5711. [71] ZAITSEV V Y,MATVEYEV A L,MATVEEV L A,et al. Strain and elasticity imaging in compression optical coherence elastography:The two-decade perspective and recent advances[J]. Jounal of Biophotonics,2021,14(2):e202000257. [72] LIU Rongrong,WINKELMANN J A,SPICER G,et al. Single capillary oximetry and tissue ultrastructural sensing by dual-band dual-scan inverse spectroscopic optical coherence tomography[J]. Light Sci Appl,2018,7:57. [73] HUO Tiancheng,WANG Chengming,ZHANG Xiao,et al. Ultrahigh-speed optical coherence tomography utilizing all-optical 40 MHz swept-source[J]. J. Biomed. Opt.,2015,20(3):030503. [74] GUO Baoshan,SUN Jingya,LU Yongfeng,et al. Ultrafast dynamics observation during femtosecond laser-material interaction[J]. International Journal of Extreme Manufacturing,2019,1(3):032004. [75] 赵圆圆,罗海超,梁紫鑫,等. 光聚合微纳3D打印技术的发展现状与趋势[J]. 中国激光,2022,49(10):330-59. ZHAO Yuanyuan,LUO Haichao,LIANG Zixin,et al. micro-nano 3D printing based on photopolymerization and its development status and trends[J]. Chinese Journal of Lasers,2022,49(10):330-59. [76] 薛平. 高性能光学相干层析成像的研究[J]. 中国激光,2021,48(15):398-408. XUE Ping. Development of high-performance optical coherence tomography[J]. Chinese Journal of Lasers,2021,48(15):398-408. |
[1] | JIANG Anna, YAN Lan, WANG Ningchang, JIANG Feng, LI Zhuo, WEN Qiuling, LU Xizhao, HUANG Hui. Research Status and Development Trends for Energy Field-assisted Laser Induced Plasma-assisted Ablation of Transparent Brittle Materials [J]. Journal of Mechanical Engineering, 2024, 60(9): 254-272. |
[2] | WU Shujing, WANG Dazhong, GU Guquan, HUANG Shuai, DONG Guojun, GUO guoqiang, AN Qinglong, LI Changhe. High-performance Machining of Complex Curved Surfaces in Multi-energy Fields: Key Technologies and Advancements [J]. Journal of Mechanical Engineering, 2024, 60(9): 152-167. |
[3] | MEI Xuesong, LI Kailin, ZHAO Wanqin, LIU Bin, SUN Zheng, DUAN Wenqiang, WANG Wenjun, CUI Jianlei, FAN Zhengjie. Overview of Laser Self Spatial Dimensional Processing Systems [J]. Journal of Mechanical Engineering, 2023, 59(19): 375-388. |
[4] | LIU Qiang, ZHANG Haijun, LIU Xianli, GAO Dayong, ZHANG Mingjian. A Review of Research on Intelligent Cutting Tools [J]. Journal of Mechanical Engineering, 2021, 57(21): 248-268. |
[5] | ZHAO Linjie, CHENG Jian, CHEN Mingjun, YUAN Xiaodong, LIAO Wei, YANG Hao, LIU Qi, WANG Haijun. New Progress of CO2 Laser Processing Techniquesfor Fused Silica Optics [J]. Journal of Mechanical Engineering, 2020, 56(11): 202-218. |
[6] | XU Gang, ZHANG Xiaotong, LI Min, XU Jinwu. A Method of Establishing Process Specifications in Process Industry Based on Statistical Process Control [J]. Journal of Mechanical Engineering, 2019, 55(8): 208-215. |
[7] | JIANG Fan, LI Yuanfeng, CHEN Shujun. Current Situation and Prospects of Welding Arc Monitoring Technology [J]. Journal of Mechanical Engineering, 2018, 54(2): 16-26. |
[8] |
CHANG Qiuying, QI Ye, WANG Bin, QIAO Jiaofei.
Tribological Influence of Laser Surface Textures on 45 Steel under Dry Sliding [J]. Journal of Mechanical Engineering, 2017, 53(3): 148-154. |
[9] | MA Ziyong, MA Lifeng, WANG Rongjun, HUANG Qingxue, MA Lidong. Study on Control Strategies of Two-roll Straightening for Bar High Precision Straightening [J]. Journal of Mechanical Engineering, 2017, 53(20): 77-88. |
[10] | LI Guo;MA Shihua;GONG Fengmei;WANG Zhaohua. Research Reviews and Future Prospective of Collaborative Operation in Supply Logistics Based on Supply-Hub [J]. , 2011, 47(20): 23-33. |
[11] | CHEN Li;ZHOU Hong;ZHAO Yu;REN Luquan. Wear Behavior of Die Steel with Non-smooth Surface in Different Shape and Distance [J]. , 2008, 44(3): 173-176. |
[12] | ZHANG Yu;YANG Musheng;LI Xiaopei. QUALITY-ORIENTED DESIGN APPROACH OF DIMENSIONAL CHAIN AND STATISTICAL TOLERANCE [J]. , 2007, 43(4): 1-6. |
[13] | Liu Hehui;Yu Gang. 3D ADAPTIVE MEASURING AND 6D MANUFACTURE TRACE GENETATING FOR THE COMPLEX BORDER OF CAR DIES [J]. , 2004, 40(12): 155-159. |
[14] | Li Di;Zeng An;Ye Feng;Lai Yizong. MULTIVARIATE STATISTICAL PROCESS CONTROL FOR ON LINE MONITORING OF SHORT-CIRCUITING GMAW [J]. , 2003, 39(8): 86-90. |
[15] | Zhang Weijun;Wei Changqing;Yang Ruqing. SYNCHRONIZED PETRI NETS MODEL FOR ROBOTIC ASSEMBLY STATES TRANSITION CONTROL [J]. , 2001, 37(4): 33-37,5. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||