Journal of Mechanical Engineering ›› 2023, Vol. 59 ›› Issue (15): 1-16.doi: 10.3901/JME.2023.15.001
Previous Articles Next Articles
WU Qilin1, ZHAO Han2, CHEN Xiaofei2, ZHAO Yating3
Received:
2023-04-28
Revised:
2023-07-03
Online:
2023-08-05
Published:
2023-09-27
CLC Number:
WU Qilin, ZHAO Han, CHEN Xiaofei, ZHAO Yating. Review of Technology, Application Status and Development Trend in Multi-arm Cooperative Robots[J]. Journal of Mechanical Engineering, 2023, 59(15): 1-16.
[1] 张含阳. 人机协作:下一代机器人的必然属性[J]. 机器人产业,2016,3:37-45. Zhang Hanyang. Human-robot collaboration:An inevitable property for the next generation of robots[J]. Robotics Industry,2016,3:37-45. [2] NavasReascos G E,Romero D,Rodriguez C A,et al. Wire harness assembly process supported by a collaborative robot:A case study focus on ergonomics[J]. Robotics,2022,11(6):131. [3] YING K c,Chen c y,Wang L x. Fuzzy Q-Learning interaction controller design for collaborative robot[J]. Cobot,2022,11:1-21. [4] 黎文娟,董凯. 从技术、场景、生态发力 抢抓协作机器人发展"新赛道"[J]. 机器人产业,2022,2:26-31. Li Wenjuan,Dong Kai. Developing a "new track" of grabbing cooperative robots from technology,Scene and Ecology[J]. Robotics Industry,2022,2:26-31. [5] 杨超. 智能制造领域协作机器人的应用分析[J]. 产业与科技论坛,2022,21(2):35-36. Yang Chao. Application analysis of collaborative robot in intelligent manufacturing field[J]. Industry and Science and Technology Forum,2022,21(2):35-36. [6] 霍淑珍,何志超. 协作机器人在智能制造中的应用[J].机床与液压,2021,49(9):62-66. HUO Shuzhen,HE Zhichao. Application of cobot in intelligent manufacturing[J]. Machine Tool & Hydraulics,2021,49(9):62-66. [7] 周顺. 三机械臂深度强化学习协调控制算法研究[D]. 天津:天津理工大学,2021. ZHOU Shun. Research on deep reinforcement learning coordination control algorithm of triple arm robot[D]. Tianjin:Tianjin University of Technology,2021. [8] KUMAR S,SIKANDER A. A novel hybrid framework for single and multi-robot path planning in a complex industrial environment[J]. Journal of Intelligent Manufacturing,2022,12:1-26. [9] 席万强. 多机器人协调系统的构建与控制研究[D]. 南京:南京航空航天大学,2019. XI Wanqiang. Research on construction and control of coordinated multi-robots system[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2019. [10] BOGUE R. The rise of surgical robots[J]. Industrial Robot:the international journal of robotics research and application,2021,48(3):335-340. [11] QU J,ZHANG F,WANG Y,et al. Human-like coordination motion learning for a redundant dual-arm robot[J]. Robotics and Computer-Integrated Manufacturing,2019,57:379-390. [12] WILSON A D,SCHULTZ J A,ANSARI A R,et al. Dynamic task execution using active parameter identification with the baxter research robot[J]. IEEE Transactions on Automation Science & Engineering A Publication of the IEEE Robotics & Automation Society,2016,14(1):391-397. [13] MICHALÍK R,JANOTA A,GREGOR M,et al. Human-Robot motion control application with artificial intelligence for a cooperating yumi robot[J]. Electronics,2021,10(16):1976. [14] KLOETZER M,MAHULEA C. Path planning for robotic teams based on LTL specifications and petri net models[J]. Discrete Event Dynamic Systems,2020,30(1):55-79. [15] CETIN O,ZAGLI I,YILMAZ G. Establishing obstacle and collision free communication relay foruavs with artificial potential fields[J]. Journal of Intelligent & Robotic Systems,2013,69(1):361-372. [16] JU M Y,LIU J S,HWANG K S. Real-time velocity alteration strategy for collision-free trajectory planning of two articulated robot manipulators[J]. Journal of Intelligent and Robotic Systems,2002,33(2):167-186. [17] 沈旭明. 基于时序A*算法的双臂机器人避障路径规划研究[D]. 杭州:浙江工业大学,2020. SHEN Xuming. Obstacle avoidance path planning for dual-arm robot based on time sequence A* algorithm[D]. Hangzhou:Zhejiang University of Technology,2020. [18] PAPAKOSTAS N,MICHALOS G,MAKRIS S,et al. Industrial applications with cooperating robots for the flexible assembly[J]. International Journal of Computer Integrated Manufacturing,2011,24(7):650-660. [19] TSAI Y C,HUANG H P. Motion planning of a dual-arm mobile robot in the configuration-time space[C]//International Conference on Intelligent Robots and Systems. Automation Division. Seminar on Robotics Applications,Missouri:IEEE/RSJ,2009:2458-2463. [20] 段晋军. 多机器人协作焊接中的轨迹规划和位置力协调控制研究[D]. 南京:东南大学,2019. DUAN Jinjun. Trajectory planning and position force coordination control in multi-robot cooperative welding process[D]. Nanjing:Southeast University,2019. [21] BASILE F,CACCAVALE F,CHIACCHIO P,et al. Task-oriented motion planning for multi-arm robotic systems[J]. Robotics and Computer Integrated Manufacturing,2012,28(5):569-582. [22] ZHENG Y,LUH J,JIA P. A real-time distributed computer system for coordinated-motion control of two industrial robots[C]//International Conference on Robotics and Automation. North Carolina:IEEE,1987:1236-1241. [23] CACCAVALE F,LIPPIELLO V,SICILIANO B,et al. RePLiCS:an environment for open real-time control of a dual-arm industrial robotic cell based on RTAI-Linux[C]//International Conference on Intelligent Robots and Systems.Networked Sensors and Robots for the Improvement of the Quality of Life,Edmonton:IEEE,2005:2493-2498. [24] WANG H,LI R,GAO Y,et al. Comparative study on the redundancy of mobile single-and dual-arm robots[J]. International Journal of Advanced Robotic Systems,2016,13(6):1-19. [25] LIU K,LEWIS F L. Decentralized continuous robust controller for mobile robots[C]//Proceedings 1990 IEEE International Conference on Robotics and Automation. Cincinnati:IEEE,1990:1822-1827. [26] KORAYEM M H,ESFEDEN R A,NEKOO S R. Path planning algorithm in wheeled mobile manipulators based on motion of arms[J]. Journal of Mechanical Science and Technology,2015,29(4):1753-1763. [27] ZHONG G,KOBAYASHI Y,HOSHINO Y,et al. System modeling and tracking control of mobile manipulator subjected to dynamic interaction and uncertainty[J]. Nonlinear Dynamics,2013,73(1-2):167-182. [28] ALONSO-MORA J,KNEPPER R,SIEGWART R,et al. Local motion planning for collaborative multi-robot manipulation of deformable objects[C]//International conference on robotics and automation (ICRA). Seattle:IEEE,2015:5495-5502. [29] MIYATA N,OTA J,ARAI T,et al. Cooperative transport by multiple mobile robots in unknown static environments associated with real-time task assignment[J]. IEEE Transactions on Robotics and Automation,2002,18(5):769-780. [30] GERKEY B P,MATARIC M J. Sold:Auction methods for multi-robot coordination[J]. IEEE Transactions on Robotics and Automation,2002,18(5):758-768. [31] HUNTSBERGER T,PIRJANIAN P,TREBI-OLLENNU A,et al. Campout:A control architecture for tightly coupled coordination of multi-robot systems for planetary surface exploration[J]. IEEE Transactions on Systems,Man,and Cybernetics -Part A:Systems and Humans,2003,33(5):550-559. [32] 陈卫东,席裕庚,顾冬雷,等. 一个面向复杂任务的多机器人分布式协调系统[J]. 控制理论与应用,2002(4):505-510. CHEN Weidong,XI Yugeng,GU Donglei,et al. A multi-robot distributed coordination system for complex tasks[J]. Control Theory and Applications,2002(4):505-510. [33] HOLLERBACH J M. Optimum kinematic design for a seven degree of freedom manipulator[C]//Proceedings of the Robotics Research. Cambridge,USA:The Second International Symposium,1985:215-222. [34] 归彤,原培章. 7自由度机器人的图谱问题[J]. 机器人,1991,13(4):27-30. GUI Tong,YUAN Peizhang. An atlas of 7-DOF robot manipulators[J]. Robot,1991,13(4):27-30. [35] 赵占芳. 七自由度机器人机构的选型[J]. 机器人,1989,3(1):53-56. ZHAO Zhanfang. The selection of seven degrees of freedom robot mechanism[J]. Robot,1989,3(1):53-56. [36] OSTERGAARD E H. Lightweight robot for everybody[industrial activities] [J]. IEEE Robotics & Automation Magazine,2012,19(4):17-18. [37] 杨世强,王蓓蓓. 轻型机械臂的轻量化结构设计优化方法[J]. 中国机械工程,2016,27(19):2575-2588. YANG Shiqiang,WANG Beibei. Lightweight structure design and optimization method for a light mobile manipulator[J]. China Mechanical Engineering,2016,27(19):2575-2588. [38] MAURICE P,PADOIS V,MEASSON Y,et al. Human-oriented design of collaborative robots[J]. International Journal of Industrial Ergonomics,2017,57(34):88-102. [39] YE D,SUN S,CHEN J,et al. The lightweight design of the humanoid robot frameworks based on evolutionary structural optimization[C]//International Conference on Robotics and Biomimetics. Bali,Indonesia:IEEE,2015:2286-2291. [40] 周瑞. 基于多目标拓扑优化的轻量化机器人设计[D]. 苏州:苏州大学,2017. ZHOU Rui. Light-weight robot design based on muti-objective topology optimization[D]. Suzhou:Soochow University,2017. [41] 陈志勇,张婷婷,郭益深. 弹性基和弹性关节空间机器人的自适应鲁棒抗扰控制及振动抑制[J]. 自动化学报,2018,44(7):1271-1281. CHEN Zhiyong,ZHANG Tingting,GUO Yishen. Adaptive robust anti-interference control and vibration suppression for an elastic-base elastic-joint space robot[J]. Acta Automatica Sinica,2018,44(7):1271-1281. [42] CAI H,HUANG Y,TANG T,et al. Double speed loops control for high-precision position tracking of position-controlled actuators involving a harmonic drive reducer[J]. Advances in Mechanical Engineering,2016,8(3):1-10. [43] JU J,ZHAO Y,ZHANG C,et al. Vibration suppression of a flexible-joint robot based on parameter identification and fuzzy PID control[J]. Algorithms,2018,11(11):189. [44] HU Y,ZHAN Y,HAN L,et al. An angle error compensation method based on harmonic analysis for integrated joint modules[J]. Sensors,2020,20(6):1715. [45] 杨振. 机器人若干控制问题分析与设计[D]. 南京:东南大学,2018. YANG Zhen. Analysis and design of several control problems of robot[D]. Nanjing:Southeast University,2018. [46] SAIOA H,CHARLES P,OSCAR A,et al. Analysis of the 2PRU-1PRS 3DOF parallel manipulator:Kinematics,singularities and dynamics[J]. Robotics and Computer Integrated Manufacturing,2018,51:63-72. [47] GAN Y H,DUAN J J,CHEN M,et al. Multi-robot trajectory planning and position/force coordination control in complex welding tasks[J]. Applied Sciences,2019,9(5):924. [48] AVISHAI S,ANDY B,TIMOTHY B. Motion planning of fully actuated closed kinematic chains with revolute joints:a comparative analysis[J]. IEEE Robotics and Automation Letters,2018,3(4):2886-2893. [49] HOU Z T,MA S M,ZENG Q F,et al. Kinematics analysis and self -collision detection of Truss type multi-robot cooperative welding platform[J]. Procedia CIRP,2019,81:488-493. [50] KHALIL W. Dynamic modeling of robots using Newton-Euler formulation[J]. Informatics in Control,Automation and Robotics,2011,89(1):3-20. [51] LI Q,LI B,ZHAO X H. Dynamic analysis of a new type of asymmetrical parallel mechanism based on lagrange method[J]. IOP Conference Series:Materials Science and Engineering,2018,428(1):012074. [52] ZHAO H,ZHEN S C,CHEN Y H. Dynamical modeling and simulation of multi-body systems by using Udwadia-Kalaba theory[J]. Chinese Journal of Mechanical Engineering,2013,26(05):839-850. [53] 戴建生. 机构学与机器人学的几何基础与旋量代数[J]. 机械设计与研究,2014(4):161-161. DAI Jiansheng. Geometric foundation and spinor algebra of mechanism and robotics[J]. Machine Design and Research,2014(4):161-161. [54] ZHEN S C,HUANG K,ZHAO H,et al. Why can a free-falling cat always manage to land safely on its feet?[J]. Nonlinear Dynamics,2015,79:2237-2250. [55] UDWADIA F E,KALABA R E. Explicit equations of motion for mechanical systems with nonideal constraints[J]. Journal of Applied Mechanics,2001,68(3):462-467. [56] UDWADIA F E,PHOHOMSIRI P. Explicit equations of motion for constrained mechanical systems with singular mass matrices and applications to multi-body dynamics[J]. Proceedings of the Royal Society A:Mathematical,Physical and Engineering Science,2006,462(2071):2097-2117. [57] UDWADIA F E. Dual generalized inverses and their use in solving systems of linear dual equations[J]. Mechanism and Machine Theory,2021,156:104158. [58] 刘镔震. 协作机器人动力学建模与控制[D]. 青岛:青岛大学,2022. LIU Binzhen. Dynamic modeling and control of collaborative robots[D]. Qingdao:Qingdao University,2022. [59] HE J,ZHENG H C,GAO F,et al. Dynamics and control of a 7-DOF hybrid manipulator for capturing a non-cooperative target in space[J]. Mechanism and Machine Theory,2019,140:83-103. [60] CHEN Y H. Fuzzy dynamical system approach to the observer design of uncertain systems[J]. Proceedings of the Institution of Mechanical Engineers,Part I:Journal of Systems and Control Engineering,2010,224(5):509-520. [61] ZHU X,TAO G,YAO B,et al. Adaptive robust posture control of parallel manipulator driven by pneumatic muscles with redundancy[J]. Automatica,2006,39(16):764-769. [62] UDWADIA F E. A new perspective on the tracking control of nonlinear structural and mechanical systems[J]. Proceedings of the Royal Society of London. Series A:Mathematical,Physical and Engineering Sciences,2003,459(2035):1783-1800. [63] UDWADIA F E. Optimal tracking control of nonlinear dynamical systems[J]. Proceedings of the Royal Society A:Mathematical,Physical and Engineering Science,2008,464(2097):2341-2363. [64] UDWADIA F E. A new approach to stable optimal control of complex nonlinear dynamical systems[J]. Journal of Applied Mechanics,2014,81(3):031001. [65] CHEN Y H. Constraint-following servo control design for mechanical systems[J]. Journal of Vibration and Control,2009,15(3):369-389. [66] SUN H,CHEN Y H,XIONG Y S,et al. Configuring tasks as constraints for coordinated mechanical systems:A Udwadia-Kalaba theory based adaptive robust control[J]. Journal of the Franklin Institute,2020,357(6):3387-3418. [67] 甘亚辉,戴先中. 多机械臂协调控制研究综述[J]. 控制与决策,2013,28(3):321-333. GAN Yahui,DAI Xianzhong. Survey of coordinated multiple manipulators control[J]. 2013,28(3):321-333. [68] HUANG B,LI Z,WU X,et al. Coordination control of a dual-arm exoskeleton robot using human impedance transfer skills[J]. IEEE Transactions on Systems,Man,and Cybernetics:Systems,2017,49(5):954-963. [69] BENLI E,MOTAI Y,ROGERS J. Visual perception for multiple human-robot interaction from motion behavior[J]. IEEE Systems Journal,2019,14(2):2937-2948. [70] ZHANG H T,XU H,XU B,et al. Adaptive learning-based distributed control of cooperative robot arm manipulation for unknown objects[J]. IEEE Transactions on Systems,Man,and Cybernetics:Systems,2022,53(2):1298-1307. [71] QU J,ZHANG F,FU Y,et al. Adaptive neural network visual servoing of dual-arm robot for cyclic motion[J]. Industrial Robot:An International Journal,2017,44(2):210-221. [72] GARCIA N,SUÁREZ R,ROSELL J. Task-dependent synergies for motion planning of an anthropomorphic dual-arm system[J]. IEEE Transactions on Robotics,2017,33(3):756-764. [73] DING X,GUO J,REN Z,et al. State-of-the-art in perception technologies for collaborative robots[J]. IEEE Sensors Journal,2021,22(18):17635-17645. [74] WENG W T,HUANG H P,ZHAO Y L,et al. Development of a visual perception system on a dual-arm mobile robot for human-robot interaction[J]. Sensors,2022,22(23):9545. [75] RODRIGUES I R,DANTAS M,OLIVEIRA FILHO A T,et al. A framework for robotic arm pose estimation and movement prediction based on deep and extreme learning models[J]. The Journal of Supercomputing,2023,79(7):7176-7205. [76] GHADIRZADEH A,CHEN X,YIN W,et al. Human-centered collaborative robots with deep reinforcement learning[J]. IEEE Robotics and Automation Letters,2020,6(2):566-571. [77] LIU L,LIU Q,SONG Y,et al. A collaborative control method of dual-arm robots based on deep reinforcement learning[J]. Applied Sciences,2021,11(4):1816. [78] 张小栋,陈江城,尹贵. 下肢康复机器人肌电感知与人机交互控制方法[J]. 振动. 测试与诊断,2018,38(4):649-657. ZHANG Xiaodong,CHEN Jiangcheng,YIN Gui. An approach for human-robot interactive control of lower limb rehabilitation robot based on surface EMG perception[J]. Vibration. Journal of Measurement & Diagnosis,2018,38(4):649-657. [79] 赵海文,齐恒佳,王旭之,等. 基于机器学习的人机协调操作意图感知与控制方法研究[J]. 机床与液压,2019 47(10):36-42. ZHAO Haiwen,QI Hengjia,WANG Xuzhi,et al. Research on the perception and control method of human robot cooperation based on machine learning[J]. Machine Tool & Hydraulics,2019,47(10):36-42. [80] MAEDA G J,NEUMANN G,EWERTON M,et al. Probabilistic movement primitives for coordination of multiple human-robot collaborative tasks[J]. Autonomous Robots,2017,41(3):593-612. [81] 刘鹏,赵韩,黄康,等. 线段齿轮法向接触刚度的改进分形模型研究[J]. 机械工程学报,2018,54(7):114-122. LIU Peng,ZHAO Han,HUANG Kang,et al. Research on normal contact stiffness of micro-segments gear based on improved fractal model[J]. Journal of Mechanical Engineering,2018,54(7):114-122. [82] HUANG K,ZHANG J,CHEN Q,et al. The transmission system dynamic analysis considering the gear installation error of the planet gears for Ravigneaux automatic gearbox[J]. Applied Mechanics and Materials,2012,215(216):1013-1016. [83] 熊杨寿,韩广志,黄康,等. 考虑时变摩擦系数的微线段齿轮系统动态特性分析[J]. 机械工程学报,2021,57(19):113-127. XIONG Yangshou,HAN Guangzhi,HUANG Kang,et al. Research on the nonlinear dynamics of micro-segment gear system with time-varying friction coefficient[J]. Journal of Mechanical Engineering,2021,57(19):113-127. [84] HUANG K,XIONG Y,WANG T,et al. Research on the dynamic response of high-contact-ratio spur gears influenced by surface roughness under EHL condition[J]. Applied Surface Science,2017,392:8-18. |
[1] | WANG Zhanxi, ZHANG Yiming, ZHANG Banghai, LUO Ziyan, SHI Mengge. Influence of Excitation Amplitude and Load on the Characteristics of a Quasi-zero Stiffness Isolator [J]. Journal of Mechanical Engineering, 2024, 60(3): 28-33. |
[2] | ZHANG He, FAN Zhibin, LI Haiming, BAI Ming, LIU Mengyao, YANG Jiahui, ZHAO Jie. Research Progress and Forward Hotspots of Vitreo-retinal Microsurgical Robot [J]. Journal of Mechanical Engineering, 2023, 59(20): 451-469. |
[3] | YUAN Xiaoqing, ZOU Huan, WU Tao, YE Xiangbin, WANG Wendong. Compound Control Method for Human-powered Augmentation Upper Exoskeleton Based on Motion Intent Recognition [J]. Journal of Mechanical Engineering, 2023, 59(15): 73-82. |
[4] | LU Hao, WANG Hongbo, FENG Yongfei. Human-machine Coupling Dynamics Modeling and Active Compliance Control of Lower Limb Rehabilitation Robot [J]. Journal of Mechanical Engineering, 2022, 58(7): 32-43. |
[5] | SUN Maowen, OUYANG Xiaoping, WANG Zezheng, LIU Hao, YANG Huayong. Cooperative Control Strategy of Pump-controlled Exoskeleton Robot Walking [J]. Journal of Mechanical Engineering, 2022, 58(18): 159-169. |
[6] | BAO Jinsong, ZHANG Rong, LI Jie, LU Yuqian, PENG Tao. Digital-twin Collaborative Technology for Human-robot-environment Integration [J]. Journal of Mechanical Engineering, 2022, 58(18): 103-115. |
[7] | JIA Jidong, ZHANG Minglu. Research Progress and Development Trend of the Safety of Human-robot Interaction Technology [J]. Journal of Mechanical Engineering, 2020, 56(3): 16-30. |
[8] | HU Ruiqin, ZHANG Lijian, MENG Shaohua, DONG Que, LONG Changyu. Robotic Assembly Technology for Heavy Component of Spacecraft Based on Compliance Control [J]. Journal of Mechanical Engineering, 2018, 54(11): 85-93. |
[9] | LI Gang;LIU Deshi. Dynamic Behavior of the Forging Manipulator under Large Amplitude Compliance Motion [J]. , 2010, 46(11): 21-28. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||