In-situ Pose Measurement Method for Large Cylinders Based on Binocular Vision and Prior Processing Data
ZHENG Lianyu1,2,3, FU Qiang1,4, FAN Wei1,2,3, ZHANG Xuexin1, LIU Xinyu1, CAO Yansheng1
1. School of Mechanical Engineering and Automation, Beihang University, Beijing 100191; 2. MIIT Key Laboratory of Intelligent Manufacturing Technology for Aeronautics Advanced Equipments, Ministry of Industry and Information Technology, Beijing 100191; 3. Beijing Key Laboratory of Digital Design and Manufacturing Technology, Beijing 100191; 4. Beijing Institute of Electronic System Engineering, Beijing 100854
ZHENG Lianyu, FU Qiang, FAN Wei, ZHANG Xuexin, LIU Xinyu, CAO Yansheng. In-situ Pose Measurement Method for Large Cylinders Based on Binocular Vision and Prior Processing Data[J]. Journal of Mechanical Engineering, 2023, 59(11): 129-146.
[1] 文科,张加波,乐毅,等. 数控驱动的移动铣削机器人精度提升方法[J]. 机械工程学报, 2021, 57(5): 72-80. WEN Ke, ZHANG Jiabo, YUE Yi, et al. Method for improving accuracy of NC-driven mobile milling robot[J]. Journal of Mechanical Engineering, 2021, 57(5): 72-80. [2] ZHU D, FENG X, XU X, et al. Robotic grinding of complex components : A step towards efficient and intelligent machining-challenges , solutions , and applications[J]. Robotics and Computer-Integrated Manufacturing, 2020, 65: 101908. [3] 廖文和,郑侃,孙连军,等. 大型复杂构件机器人加工稳定性研究进展[J]. 航空学报, 2022, 43(1): 026061. LIAO Wenhe, ZHENG Kang, SUN Lianjun, et al. Review on chatter stability in robotic machining for large complex components[J]. Acta Aeronauticaet Astronautica Sinica, 2022, 43(1): 026061. [4] 田威,焦嘉琛,李波,等. 航空航天制造机器人高精度作业装备与技术综述[J]. 南京航空航天大学学报, 2020, 52(3): 341-352. TIAN Wei, JIAO Jiashen, LI Bo, et al. High precision robot operation equipment and technology in aerospace manufacturing[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2020, 52(3): 341-352. [5] FAN W, ZHENG L, JI W, et al. Function block-based closed-loop adaptive machining for assembly interfaces of large-scale aircraft components[J]. Robotics and Computer-Integrated Manufacturing, 2020, 66: 101994. [6] FAN W, ZHENG L, JI W, et al. A machining accuracy informed adaptive positioning method for finish machining of assembly interfaces of large-scale aircraft components[J]. Robotics and Computer-Integrated Manufacturing, 2021, 67: 102021. [7] 许爱军,贾悦荣,赵长喜. 某大型空间航天器带法兰异构壁板精密成形工艺研究[J]. 载人航天, 2017, 23(5): 619-625. XU Aijun, JIA Yuerong, ZHAO Changxi. Research on precision forming technology for large integral panel with flanges of a spacecraft[J]. Manned Spaceflight, 2017, 23(5): 619-625. [8] 陶波,赵兴炜,李汝鹏,等. 机器人测量-操作-加工一体化技术研究及其应用[J]. 中国机械工程, 2020, 31(1): 49-56. TAO Bo, ZHAO Xingwei, LI Rupeng, et al. Research on robotic measurement-operation-machining technology and its application[J]. China Mechanical Engineering, 2020, 31(1): 49-56. [9] 谢福贵,梅斌,刘辛军,等. 一种大型复杂构件加工新模式及新装备探讨[J]. 机械工程学报, 2020, 56(19): 70-78. XIE Fugui, MEI Bin, LIU Xinjun, et al. Novel mode and equipment for machining large complex components[J]. Journal of Mechanical Engineering, 2020, 56(19): 70-78. [10] VERL A, VALENTE A, MELKOTE S, et al. Robots in machining[J]. CIRP Annals, 2019, 68(2): 799-822. [11] BESCHI M, MUTTI S, NICOLA G, et al. Optimal robot motion planning of redundant robots in machining and additive manufacturing applications[J]. Electronics, 2019, 8(12): 1437. [12] JI W, WANG L. Industrial robotic machining: A review[J]. The International Journal of Advanced Manufacturing Technology, 2019, 103(1): 1239-1255. [13] ZHU Z R, TANG X W, CHEN C, et al. High precision and efficiency robotic milling of complex parts: Challenges, approaches and trends[J]. Chinese Journal of Aeronautics, 2022, 35(2): 22-46. [14] 林雪竹,李丽娟,曹国华,等. 大部件对接中iGPS高精度位姿测量优化设计[J]. 航空学报, 2015, 36(4): 1299-1311. LIN Xuezhu, LI Lijuan, CAO Guohua, et al. Optimal design based on iGPS high-precision posture measurement for large size component joining[J]. Acta Aeronauticaet Astronautica Sinica , 2015, 36(4): 1299-1311. [15] YE J Q , NIU Z Q, ZHANG X C , et al. In-situ deflectometic measurement of transparent optics in precision robotic polishing[J]. Precision Engineering, 2020, 64: 1. [16] 乔贵方,孙大林,温秀兰,等. 面向机器人标定的单激光跟踪仪顺序多站式测量系统建模与分析[J]. 计量学报, 2020, 41(11): 1313-1320. QIAO Guifang, SUN Dalin, WEN Xiulan, et al. Modeling and analysis of sequential multi-lateration measurement system based on single laser tracker for robot calibration[J]. Acta Metrologica Sinica, 2020, 41(11): 1313-1320. [17] CHEN Z, DU F. Measuring principle and uncertainty analysis of a large volume measurement network based on the combination of iGPS and portable scanner[J]. Measurement, 2017, 104: 263-277. [18] ZHOU Y, LI Q, CHU L, et al. A measurement system based on internal cooperation of cameras in binocular vision[J]. Measurement Science and Technology, 2020, 31(6): 065002. [19] 朱绪胜,刘蕾,陈雪梅. 基于蒙特卡洛仿真的车间现场激光跟踪仪测量站位优化[J]. 计算机集成制造系统, 2020, 26(11): 3001-3010. ZHU Xusheng, LIU Lei, CHEN Xuemei. Measurement station optimization for laser tracker in-situ using based on Monte-Carlo simulation[J]. Computer Integrated Manufacturing Systems, 2020, 26(11): 3001-3010. [20] WANG L, MURALIKRISHNAN B, HERNANDEZ O I, et al. Performance evaluation of laser trackers using the network method[J]. Measurement, 2020, 165: 108165. [21] 周森,郭永彩,高潮,等. 基于三维激光扫描的移动大尺寸圆柱体工件长度快速检测系统[J]. 光学精密工程, 2014, 22(6): 1524-1530. ZHOU Sen, GUO Yongcai, GAO Chao, et al. Rapid length measuring system for mobile and large scale cylinder workpiece based on 3D laser scanning[J]. Optics and Precision Engineering, 2014, 22(6): 1524-1530. [22] SŁADEK J, BŁASZCZYK P M, KUPIEC M, et al. The hybrid contact-optical coordinate measuring system[J]. Measurement, 2011, 44(3): 503-510. [23] 景喜双,张鹏飞,王志佳,等. 数字化组合测量辅助飞机装配质量检测技术[J]. 北京航空航天大学学报, 2015, 41(7): 1196-1201. JING Xishuang, ZHANG Pengfei, WANG Zhijia, et al. Digital combined measuring technology assisted quality inspection for aircraft assembly[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(7): 1196-1201. [24] 范斌,季青松,李明飞,等. iGPS测量系统与激光跟踪仪在某飞机大部件数字化装配中的对比应用[J]. 航空制造技术, 2019, 62(5): 57-62. FAN Bin, JI Qingsong, LI Mingfei, et al. iGPS and laser tracker applications comparison in digital assembly of large aircraft parts[J]. Aeronautical Manufacturing Technology, 2019, 62(5): 57-62. [25] ZENG Q, HUANG X, LI S, et al. High-efficiency posture prealignment method for large component assembly via iGPS and laser ranging[J]. IEEE Transactions on Instrumentation and Measurement , 2019, 69(8) : 5497-5510. [26] 隋少春, 朱绪胜. 飞机整机装配质量数字化测量技术[J]. 中国科学:技术科学, 2020, 50(11): 1449-1460. SUI Shaochun , ZHU Xusheng. Digital measurement technique for evaluating aircraft final assembly quality[J]. SCIENTIA SINICA Technologica , 2020, 50(11): 1449-1460. [27] 袁培江,陈冬冬,王田苗,等. 基于双目视觉测量系统的孔位补偿研究[J]. 航空制造技术, 2018, 61(4): 41-46. YUAN Peijiang, CHEN Dongdong, WANG Tianmiao, et al. Research on positional error compensation method based on binocular vision measurement system[J]. Aeronautical Manufacturing Technology, 2018, 61(4): 41-46. [28] XU S, WANG J, SHOU W, et al. Computer vision techniques in construction: A critical review[J]. Archives of Computational Methods in Engineering, 2021, 28(5): 3383-3397. [29] FENG X, JIANG Y, YANG X, et al. Computer vision algorithms and hardware implementations: A survey[J]. Integration, 2019, 69: 309-320. [30] CHAI J, ZENG H, LI A, et al. Deep learning in computer vision: A critical review of emerging techniques and application scenarios[J]. Machine Learning with Applications, 2021, 6: 100134. [31] HE Y, ZHU C, WANG J, et al. Bounding box regression with uncertainty for accurate object detection[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 2888-2897. [32] ZHANG Z. A flexible new technique for camera calibration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(11): 1330-1334.