[1] 史玉升,伍宏志,闫春泽,等. 4D打印——智能构件的增材制造技术[J]. 机械工程学报,2020,56(15):1-25. SHI Yushen,WU Hongzhi,YAN Chunze,et al. Four-dimensional printing-the additive manufacturing technology of intelligent components[J]. Journal of Mechanical Engineering,2020,56(15):1-25. [2] KUANG X,ROACH D J,WU J,et al. Advances in 4D printing:Materials and applications[J]. Advanced Functional Materials,2019,29(2):1805290-1805313. [3] 高一聪,曾思远,冯毅雄,等. 支持4D打印的可控变形结构设计研究进展[J]. 机械工程学报,2020,56(15):26-38. GAO Yicong,ZENG Siyuan,FENG Yixiong,et al. Review of design of programmable morphing composite structures by 4D printing[J]. Journal of Mechanical Engineering,2020,56(15):26-38. [4] REN L,SONG Z,LIU H,et al. 3D printing of materials with spatially non-linearly varying properties[J]. Materials & Design,2018,156:470-479. [5] 魏洪秋,万雪,刘彦菊,等. 4D打印形状记忆聚合物材料的研究现状与应用前景[J]. 中国科学:技术科学,2018,48(1):2-16. WEI Hongqiu,WAN Xue,LIU Yanju,et al. 4D printing of shape memory polymers:Research status and application prospect[J]. Scientia Sinica Technologica,2018,48:2-16. [6] HAN M W,AHN S H. Blooming knit flowers:loop-linked soft morphing structures for soft robotics[J]. Advanced Materials,2017,29(13):1606580-1606586. [7] VAN MANEN T,JANBAZ S,ZADPOOR A A. Programming 2D/3D shape-shifting with hobbyist 3D printers[J]. Materials Horizons,2017,4(6):1064-1069. [8] DENG D,KWOK T H,CHEN Y. Four-dimensional printing:Design and fabrication of smooth curved surface using controlled self-folding[J]. Journal of Mechanical Design,2017,139(8):081702-081715. [9] TIAN X,LIU T,YANG C,et al. Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites[J]. Composites Part A:Applied Science and Manufacturing,2016,88:198-205. [10] YANG C,TIAN X,LIU T,et al. 3D printing for continuous fiber reinforced thermoplastic composites:Mechanism and performance[J]. Rapid Prototyping Journal,2017,23(1):209-215. [11] WANG Q,TIAN X,HUANG L,et al. Programmable morphing composites with embedded continuous fibers by 4D printing[J]. Materials & Design,2018,155:404-413. [12] GUO W,LI M,ZHOU J. Modeling programmable deformation of self-folding all-polymer structures with temperature-sensitive hydrogels[J]. Smart Materials and Structures,2013,22(11):115028-115035. [13] DE LEON A,BARNES A C,THOMAS P,et al. Transfer printing of self-folding polymer-metal bilayer particles[J]. ACS Applied Materials & Interfaces,2014,6(24):22695-22700. [14] GE Q,DUNN C K,QI H J,et al. Active origami by 4D printing[J]. Smart Materials and Structures,2014,23(9):094007-094023. [15] DENG D,CHEN Y. Origami-based self-folding structure design and fabrication using projection based stereolithography[J]. Journal of Mechanical Design,2015,137(2):021701-021711. [16] ROUDAUT A,KARNIK A,LÖCHTEFELD M,et al. Morphees:Toward high shape resolution in self-actuated flexible mobile devices[C]//Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM,2013:593-602. [17] GOMES A,NESBITT A,VERTEGAAL R. MorePhone:A study of actuated shape deformations for flexible thin-film smartphone notifications[C]//Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,New York,America. ACM,2013:583-592. [18] PERAZA-HERNANDEZ E A,HARTL D J,MALAK JR R J. Design and numerical analysis of an SMA mesh-based self-folding sheet[J]. Smart Materials and Structures,2013,22(9):094008-094026. [19] HALBERT T,MOGHADAS P,MALAK R,et al. Control of a shape memory alloy based self-folding sheet[C]//International Design Engineering Technical Conferences and Computers and Information in Engineering Conference,Saint Louis,US,American Society of Mechanical Engineers,2014,46377:V05BT08A041. [20] PERAZA HERNANDEZ E A,HARTL D J,AKLEMAN E,et al. Connectivity of shape memory alloy-based self-folding structures[C]//22nd AIAA/ASME/AHS Adaptive Structures Conference,Lyon,France,2014:1415-1428. [21] HARTL D,LANE K,MALAK R. Computational design of a reconfigurable origami space structure incorporating shape memory alloy thin films[C]//ASME 2012 Conference on Smart Materials,Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers,Stone Mountain,Georgia,America,2012:277-285. [22] HARTL D,LANE K,MALAK R. Design of a massively reconfigurable origami space structure incorporating shape memory alloys[C]//ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers,Texas,America,2012:115-122. [23] PERAZA-HERNANDEZ E,HARTL D,LAGOUDAS D. Modeling of shape memory alloy wire meshes using effective lamina properties for improved analysis efficiency[C]//Smart Materials,Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers,Utah,America,2013,56031:V001T01A009. [24] ONAL C D,WOOD R J,RUS D. An origami-inspired approach to worm robots[J]. IEEE/ASME Transactions on Mechatronics,2013,18(2):430-438. [25] LUCHNIKOV V,LONOV L,STAMM M. Self-rolled polymer tubes:Novel tools for microfluidics,microbiology,and drug-delivery systems[J]. Macromolecular rapid communications,2011,32(24):1943-1952. [26] IONOV L. Nature-inspired stimuli-responsive self-folding materials[M]. Hoboken:John Wiley & Sons,Inc. 2013. [27] SHIM T S,KIM S H,HEO C J,et al. Controlled origami folding of hydrogel bilayers with sustained reversibility for robust microcarriers[J]. Angewandte Chemie International Edition,2012,51(6):1420-1423. [28] HE H,GUAN J,LEE J L. An oral delivery device based on self-folding hydrogels[J]. Journal of Controlled Release,2006,110(2):339-346. [29] GUAN J,HE H,HANSFORD D J,et al. Self-folding of three-dimensional hydrogel microstructures[J]. The Journal of Physical Chemistry B,2005,109(49):23134-23137. [30] LI S,Wang K W. Plant-inspired adaptive structures and materials for morphing and actuation:A review[J]. Bioinspiration & Biomimetics,2016,12(1):011001-011019. [31] SUN L,HUANG W M,DING Z,ET AL. Stimulus-responsive shape memory materials:A review[J]. Materials & Design,2012,33:577-640. [32] ZENG S,GAO Y,FENG Y,et al. Programming the deformation of a temperature-driven bilayer structure in 4D printing[J]. Smart Materials and Structures,2019,28(10):105031-105045. [33] FENG Y,XU J,ZENG S,et al. Controlled helical deformation of programmable bilayer structures:Design and fabrication[J]. Smart Materials and Structures,2020,29(8):085042-085060. [34] DENG D,CHEN Y. 4D printing:Design and fabrication of 3D shell structures with curved surfaces using controlled self-folding[C]//International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers,Guangzhou,China,2015,56826:V001T02A070. [35] TIMOSHENKO,S. Analysis of bi-metal thermostats[J]. Journal of The Optical Society of America and Review of Scientific Instruments,1925,11(3),223-255. [36] GOO B,HONG C H,PARK K. 4D printing using anisotropic thermal deformation of 3D-printed thermoplastic parts[J]. Materials & Design,2020,188:108485-108494. |