Study on the Solid-liquid Interaction Characteristics of the Oil Film within Piston Cylinder Pair of the Ultra-high Pressure Swash Plate Type Axial Piston Pump
HU Min1,2, GAO Peng1, MIN Sijie3, LIU Rui1, QIU Tianxiang1, ZENG Yishan1, LIU Changhai1,2
1. School of Mechanical Engineering, Hefei University of Technology, Hefei 230009; 2. State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027; 3. Anhui Boyi Fluid Power Transmission Joint Stock Co., Ltd., Hefei 230009
HU Min, GAO Peng, MIN Sijie, LIU Rui, QIU Tianxiang, ZENG Yishan, LIU Changhai. Study on the Solid-liquid Interaction Characteristics of the Oil Film within Piston Cylinder Pair of the Ultra-high Pressure Swash Plate Type Axial Piston Pump[J]. Journal of Mechanical Engineering, 2022, 58(20): 438-452.
[1] IVANTYSYNOVA M. The piston cylinder assembly in piston machines - A long journey of discovery [C]//Proceedings of 8th IFK International Conference on Fluid Power,Dresden,Germany,2012:307-332. [2] 温诗铸,黄平,田煜,等. 摩擦学原理[M]. 北京:清华大学出版社,2018. WEN Shizhu,HUANG Ping,TIAN Yu,et al. Tribology theory[M]. Beijing:Tsinghua University Press,2018. [3] HUANG C,IVANTYSYNOVA M. An advanced gap flow model considering piston micro motion and elastohydrodynamic effect [C/CD]// 4th FPNI Phd Symposium,Sarasota,Florida,2006. [4] IVANTYSYNOVA M,HUANG C,JAPING A. Determination of gap surface temperature distribution in axial piston machines[C/CD]// Proc. of the 2006 ASME International Mechanical Engineering Congress,IMECE 2006,15249. [5] FATEMI A,WOHLERS A,MURRENHOFF H. Simulation of elastohydrodynamic contact between piston and cylinder in axial piston pumps[C]// Proc. of the 6th International Fluid Power Conference,Dresden,2008:539-552. [6] PELOSI M. An investigation on the fluid-structure interaction of piston/cylinder interface[D]. West Lafayette:Purdue University,2012. [7] PELOSI M,IVANTYSYNOVA M. Heat transfer and thermal elastic deformation analysis on the piston/cylinder interface of axial piston machines[J]. Transaction of the ASME,Journal of Tribology,2012,134(1):1-15. [8] PELOSI M,IVANTYSYNOVA M. A geometric multigrid solver for the piston-cylinder interface of axial piston machines[J]. Tribology Transactions,2012,55(2):163-174. [9] PELOSI M,IVANTYSYNOVA M. The impact of axial piston machines mechanical parts constraint conditions on the thermo-elastohydrodynamic lubrication analysis of the fluid film interfaces[J]. International Journal of Fluid Power,2013,14(3):35-51. [10] ERNST M,VACCA A. Hydrostatic vs. hydrodynamic components of fluid pressure in the tribological interfaces of axial piston machines[J]. Tribology International,2021,157:106878. [11] ERNST M,VACCA A,IVANTYSYNOVA M. et al. Tailoring the bore surfaces of water hydraulic axial piston machines to piston tilt and deformation[J]. Energies,2020,13(22):5997. [12] HASKO D,SHANG L,NOPPE E. et al. Virtual assessment and experimental validation of power loss contributions in swash plate type axial piston pumps[J]. Energies,2019,12(16):3096. [13] CHACON R,IVANTYSYNOVA M. Virtual prototyping of axial piston machines:Numerical method and experimental validation[J]. Energies,2019,12(9):1674. [14] SHANG L,IVANTYSYNOVA M. Scaling criteria for axial piston machines based on thermo-elastohydrodynamic effects in the tribological interfaces[J]. Energies,2018,11(11):3210. [15] SARODE S,SHANG L,VACCA A. Numerical investigation of the influence of part geometric tolerances on piston/cylinder interface performance[C/CD]// 2020 Global Fluid Power Society PhD Symposium,Guilin,China,2020. [16] SARODE S,SHANG L. Novel pressure adaptive piston cylinder interface design for axial piston machines[C/CD]// ASME/Bath Symposium on Fluid Power and Motion Control,Sarasota,FL,USA,2019. [17] 许耀铭. 油膜理论与液压泵和马达的摩擦副设计[M]. 北京:机械工业出版社,1984. XU Yaoming. Oil film theory and friction pair design of hydraulic pump and motor[M]. Beijing:China Machine Press,1984. [18] 王智慧,苑士华,彭增雄. 柱塞自转对油膜承载能力的影响[J]. 北京理工大学学报,2012,32(4):381-385. WANG Zhihui,YUAN Shihua,PENG Zengxiong. Influence of piston spin on film load capacity[J]. Transactions of Beijing Institute of Technology,2012,32(4):381-385. [19] XU Bing,ZHANG Junhui,YANG Huayong,et al. Investigation on the radial micro-motion about piston of axial piston pump[J]. Chinese Journal of Mechanical Engineering,2013,26(2):325-333. [20] 吕飞,徐兵,张军辉. 转速对EHA泵柱塞副柱塞位姿及泄漏量影响仿真分析[J]. 机械工程学报,2018,54(20):123-130. LÜ Fei ,XU Bing ,ZHANG Junhui. Simulative analysis of piston posture and piston/cylinder interface leakage of EHA pumps by the influence of rotating speed[J]. Journal of Mechanical Engineering,2018,54(20):123-130. [21] 杨淼. 斜盘式轴向柱塞泵柱塞副与滑靴副动态润滑特性研究[D]. 哈尔滨:哈尔滨工业大学,2014. YANG Miao. Dynamic lubrication characteristics analysis of piston/cylinder interface and slipper/swash plate interface in swash-plate axial piston pump[D]. Harbin:Harbin Institute of Technology,2014. [22] 王克龙,姜继海,汪泽波,等. 柱塞副微运动轨迹及微倒角对其影响分析[J]. 华中科技大学学报,2019,47(6):46-51. WANG Kelong,JIANG Jihai,WANG Zebo,et al. Micro-motion of piston/cylinder interface and the influence of micro chamfering on it[J]. J.Huazhong Univ. of Sci. & Tech., 2019,47(6):46-51. [23] 李晶,陈昊,訚耀保. 轴向柱塞泵柱塞副偏心状态油膜特性分析[J]. 华南理工大学学报,2016,44(10):30-35. LI Jing,CHEN Hao,YIN Yaobao. Oil characteristic analysis of piston-cylinder interface in axial piston pump with radial micro-motion[J]. Journal of South China University of Technology,2016,44(10):30-35. [24] 李元,王少萍,石健,等. 考虑油液黏压特性的高压航空液压泵柱塞副泄漏模型研究[J]. 液压与气动,2018(5):13-19. LI Yuan,WANG Shaoping,SHI Jian,et al. Leakage model considering viscosity-pressure properties of oil for piston-cylinder pair of high pressure aviation hydraulic pump[J]. Chinese Hydraulics & Pneumatics,2018(5):13-19. [25] 童宝宏,杨文,刘庆运,等. 柱塞泵螺旋沟槽式柱塞-铜套副缝隙流场流动与均压特性[J]. 农业工程学报,2018,34(2):55-63. TONG Baohong,YANG Wen,LIU Qingyun,et al. Flowing and pressure-balancing characteristics of clearance field in helical grooved piston-copper sleeve pair of piston pump[J]. Transactions of the Chinese Society of Agricultural Engineering,2018,34(2):55-63. [26] 童水光,王相兵,钟崴,等. 基于虚拟样机技术的轴向柱塞泵动态特性分析[J]. 机械工程学报,2013,49(2):174-182. TONG Shuiguang,WANG Xiangbing,ZHONG Wei,et al. Dynamic characteristics analysis on axial piston pump based on virtual prototype technology[J]. Journal of Mechanical Engineering,2013,49(2):174-182. [27] LÜ Fei,ZHANG Junhui,SUN Guangming,et al. Research on wear prediction of piston/cylinder pair in axial piston pumps[J]. Wear,2020,456-457:203338. [28] ZHANG Junhui,LÜ Fei,XU Bing,et al. Simulation and experimental investigation on low wear rate surface contour of piston/cylinder pair in an axial piston pump[J]. Tribology International,2021:107127. [29] MA Xuan,WANG Q J,LU Xiqun,et al. A transient hydrodynamic lubrication model for piston/cylinder interface of variable length[J]. Tribology International,2018:S0301679X17304504. [30] JIANG Jihai,WANG Kelong,WANG Zebo,et al. The impact of bushing thickness on the piston/cylinder interface in axial piston pump[J]. IEEE Access,2019(7):24971-24977. [31] NIE Songlin,GUO Ming,YIN Fanglong,et al. Research on fluid-structure interaction for piston/cylinder tribopair of seawater hydraulic axial piston pump in deep-sea environment - ScienceDirect[J]. Ocean Engineering,2020,219:108222. [32] 胡敏.轴向柱塞泵摩擦副功率损失剖析及表面形貌摩擦学设计技术研究[D].杭州:浙江大学,2016. HU Min.Study on power losses and tribology design technology for the surface topography of friction pairs of axial piston pump [D].Hangzhou:Zhejiang University,2016. [33] 合肥工业大学. 一种抗倾覆耐超高压高速的轴向柱塞泵/马达缸体:CN201911181896.7[P]. 2020-04-20. Hefei University of Technology. An axial piston pump/motor cylinder block capable of resisting overturning and enduring ultra-high pressure and high speed:CN201911181896.7[P]. 2020-04-20.