Journal of Mechanical Engineering ›› 2022, Vol. 58 ›› Issue (18): 251-264.doi: 10.3901/JME.2022.18.251
Previous Articles Next Articles
HUANG Sihan1, WANG Baicun2,3, ZHANG Meidi1, HUANG Jintang1, ZHU Qizhang1, YANG Geng2
Received:
2021-11-15
Revised:
2022-05-10
Online:
2022-09-20
Published:
2022-12-08
CLC Number:
HUANG Sihan, WANG Baicun, ZHANG Meidi, HUANG Jintang, ZHU Qizhang, YANG Geng. Operator 4.0 Towards Human-centric Smart Manufacturing: Framework, Enabling Technologies and Typical Scenarios[J]. Journal of Mechanical Engineering, 2022, 58(18): 251-264.
[1] 周济. 智能制造——“中国制造2025”的主攻方向[J].中国机械工程,2015,26(17):2273-2284. ZHOU Ji. Intelligent manufacturing:Main direction of “made in China 2025”[J]. China Mechanical Engineering,2015,26(17):2273-2284. [2] ZHOU J,LI P,ZHOU Y,et al. Toward new-generation intelligent manufacturing[J]. Engineering,2018,4(1): 11-20. [3] WANG B,TAO F,FANG X,et al. Smart manufacturing and intelligent manufacturing:a comparative review[J]. Engineering,2020,7(6):738-757. [4] LI X,WANG B,LIU C,et al. Intelligent manufacturing systems in COVID-19 pandemic and beyond: framework and impact assessment[J]. Chinese Journal of Mechanical Engineering,2020,33(1):1-5. [5] 臧冀原,王柏村,孟柳,等. 智能制造的三个基本范式:从数字化制造、“互联网+”制造到新一代智能制造[J]. 中国工程科学,2018,20(4):13-18.ZANG Jiyuan,WANG Baicun,MENG Liu,et al. Brief analysis on three basic paradigms of intelligent manufacturing[J]. Engineering Sciences,2018,20(4): 13-18. [6] 王柏村,薛塬,延建林,等. 以人为本的智能制造:理念、技术与应用[J]. 中国工程科学,2020,22(4): 139-146.WANG Baicun,XUE Yuan,YAN Jianlin,et al. Human-centered intelligent manufacturing: overview and perspectives[J]. Strategic Study of CAE,2020,22(4):139-146. [7] 王柏村,黄思翰,易兵,等. 面向智能制造的人因工程研究与发展[J]. 机械工程学报,2020,56(16):240-253.WANG Baicun,HUANG Sihan,YI Bing,et al. State-of-art of human factors/ergonomics in intelligent manufacturing[J]. Journal of Mechanical Engineering,2020,56(16):240-253. [8] ZHOU J,ZHOU Y,WANG B,et al. Human-cyber-physical systems (HCPSs) in the context of new-generation intelligent manufacturing[J]. Engineering,2019,5(4):624-636. [9] 王柏村,易兵,刘振宇,等. HCPS视角下智能制造的发展与研究[J]. 计算机集成制造系统,2021,27(10):2749-2761.WANG Baicun,YI Bing,LIU Zhenyu,et al. Evolution and state-of-the-art of intelligent manufacturing from HCPS perspective[J]. Computer Integrated Manufacturing Systems,2021,27(10):2749-2761. [10] 王柏村,臧冀原,屈贤明,等. 基于人-信息-物理系统(HCPS)的新一代智能制造研究[J]. 中国工程科学,2018,20(4):29-34.WANG Baicun,ZANG Jiyuan,QU Xianming,et al. Research on new-generation intelligent manufacturing based on human-cyber-physical systems[J]. Engineering Sciences,2018,20(4):29-34. [11] ROMERO D,BERNUS P,NORAN O,et al. The Operator 4.0: Human cyber-physical systems & adaptive automation towards human-automation symbiosis work systems[C]//IFIP International Conference on Advances in Production Management Systems. Springer,Cham,2016: 677-686. [12] ROMERO D,STAHRE J,WUEST T,et al. Towards an Operator 4.0 typology: A human-centric perspective on the fourth industrial revolution technologies[C]// Proceedings of the International Conference on Computers and Industrial Engineering (CIE46),Tianjin,China. 2016:29-31. [13] MATTSSON S,FAST-BERGLUND Å,LI D,et al. Forming a cognitive automation strategy for Operator 4.0 in complex assembly[J]. Computers & Industrial Engineering,2020,139:105360. [14] SINGH S,TRETTEN P. Research anthology on cross-industry challenges of industry 4.0 IGI globbal[M].Hershey,USA:IGI Global,2021. [15] BOUSDEKIS A,APOSTOLOU D,MENTZAS G. A human cyber physical system framework for Operator 4.0–artificial intelligence symbiosis[J]. Manufacturing Letters,2020,25:10-15. [16] TAYLOR M P,BOXALL P,CHEN J J J,et al. Operator 4.0 or Maker 1.0? Exploring the implications of Industries 4.0 for innovation,safety and quality of work in small economies and enterprises[J]. Computers & Industrial Engineering,2020,139:105486. [17] KAASINEN E,SCHMALFUSS F,ÖZTURK C,et al. Empowering and engaging industrial workers with Operator 4.0 solutions[J]. Computers & Industrial Engineering,2020,139:105678. [18] ROSEN J,BRAND M,FUCHS M B,et al. A myosignal-based powered exoskeleton system[J]. IEEE Transactions on systems,Man,and Cybernetics-part A: Systems and Humans,2001,31(3):210-222. [19] SYLLA N,BONNET V,COLLEDANI F,et al. Ergonomic contribution of ABLE exoskeleton in automotive industry[J]. International Journal of Industrial Ergonomics,2014,44(4):475-481. [20] 史小华,王洪波,孙利,等. 外骨骼型下肢康复机器人结构设计与动力学分析[J]. 机械工程学报,2014,50(3):41-48.SHI Xiaohua,WANG Hongbo,SUN Li,et al. Design and dynamic analysis of an exoskeletal lower limbs rehabilitation robot[J]. Journal of Mechanical Engineering,2014,50(3):41-48. [21] COLLINS S H,WIGGIN M B,SAWICKI G S. Reducing the energy cost of human walking using an unpowered exoskeleton[J]. Nature,2015,522(7555):212-215. [22] MUNOZ L M. Ergonomics in the industry 4.0: exoskeletons[J]. J. Ergonomics,2018,8(1):176. [23] 荆泓玮,朱延河,赵思恺,等. 外肢体机器人研究现状及发展趋势[J]. 机械工程学报,2020,56(7):1-9.JING Hongwei,ZHU Yanhe,ZHAO Sikai,et al. Research status and development trend of supernumerary robotic limbs[J]. Journal of Mechanical Engineering,2020,56(7):1-9. [24] HUYSAMEN K,DE LOOZE M,BOSCH T,et al. Assessment of an active industrial exoskeleton to aid dynamic lifting and lowering manual handling tasks[J]. Applied ergonomics,2018,68:125-131. [25] STADLER K S,ALTENBURGER R,SCHMIDHAUSER E,et al. Robo-mate an exoskeleton for industrial use—concept and mechanical design[C]//19th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines,London,UK. 2017:806-813. [26] AZUMA R T. A survey of augmented reality[J]. Presence: Teleoperators & Virtual Environments,1997,6(4):355-385. [27] CARMIGNIANI J,FURHT B. Handbook of augmented reality[M]. New York:Spriger,2011. [28] BLANCO-NOVOA O,FERNANDEZ-CARAMES T M,FRAGA-LAMAS P,et al. A practical evaluation of commercial industrial augmented reality systems in an industry 4.0 shipyard[J]. IEEE Access,2018,6:8201-8218. [29] DE PACE F,MANURI F,SANNA A. Augmented reality in industry 4.0[J]. American Journal of Computer Science and Information Technology,2018,6(1):1-7. [30] PAELKE V. Augmented reality in the smart factory: supporting workers in an industry 4.0. environment[C]// Proceedings of the 2014 IEEE emerging technology and factory automation (ETFA). IEEE,2014:1-4. [31] BRUNO F,BARBIERI L,MARINO E,et al. An augmented reality tool to detect and annotate design variations in an industry 4.0 approach[J]. The International Journal of Advanced Manufacturing Technology,2019,105(1):875-887. [32] ZHENG J M,CHAN K W,GIBSON I. Virtual reality[J]. IEEE Potentials,1998,17(2):20-23. [33] DAVIDSON J,FOWLER J,PANTAZIS C,et al. Integration of VR with BIM to facilitate real-time creation of bill of quantities during the design phase:A proof of concept study[J]. Frontiers of Engineering Management,2020,7(3):396-403. [34] TURNER C J,HUTABARAT W,OYEKAN J,et al. Discrete event simulation and virtual reality use in industry: new opportunities and future trends[J]. IEEE Transactions on Human-Machine Systems,2016,46(6):882-894. [35] MANCA D,BRAMBILLA S,COLOMBO S. Bridging between virtual reality and accident simulation for training of process-industry operators[J]. Advances in Engineering Software,2013,55:1-9. [36] MUJBER T S,SZECSI T,HASHMI M S J. Virtual reality applications in manufacturing process simulation[J]. Journal of Materials Processing Technology,2004,155:1834-1838. [37] MALIK A A,MASOOD T,BILBERG A. Virtual reality in manufacturing: Immersive and collaborative artificial- reality in design of human-robot workspace[J]. International Journal of Computer Integrated Manufacturing,2020,33(1):22-37. [38] NNAJI C,AWOLUSI I. Critical success factors influencing wearable sensing device implementation in AEC industry[J]. Technology in Society,2021,66: 101636. [39] MARDONOVA M,CHOI Y. Review of wearable device technology and its applications to the mining industry[J]. Energies,2018,11(3):547. [40] FOXLIN E,NAIMARK L. VIS-Tracker: A wearable vision-inertial self-tracker[J]. VR,2003,3:199. [41] LI J,LI H,UMER W,et al. Identification and classification of construction equipment operators' mental fatigue using wearable eye-tracking technology[J]. Automation in Construction,2020,109:103000. [42] MAYBERRY A,HU P,MARLIN B,et al. Shadow: design of a wearable,real-time mobile gaze tracker[C]//Proceedings of the 12th Annual International Conference on Mobile systems,Applications,and Services. 2014:82-94. [43] ZHOU Y,WANG L,DING L,et al. Intelligent technologies help operating mobile cabin hospitals effectively cope with COVID-19[J]. Frontiers of Engineering Management,2020,7(3):459-460. [44] MYERS K,BERRY P,BLYTHE J,et al. An intelligent personal assistant for task and time management[J]. AI Magazine,2007,28(2):47-47. [45] ROVEDA L,MASKANI J,FRANCESCHI P,et al. Model-based reinforcement learning variable impedance control for human-robot collaboration[J]. Journal of Intelligent & Robotic Systems,2020,100(2):417-433. [46] ZOLOTOVÁ I,PAPCUN P,KAJÁTI E,et al. Smart and cognitive solutions for Operator 4.0: Laboratory H-CPPS case studies[J]. Computers & Industrial Engineering,2020,139:105471. [47] MAURICE P,PADOIS V,MEASSON Y,et al. Human-oriented design of collaborative robots[J]. International Journal of Industrial Ergonomics,2017,57: 88-102. [48] MICHALOS G,KOUSI N,KARAGIANNIS P,et al. Seamless human robot collaborative assembly-an automotive case study[J]. Mechatronics,2018,55: 194-211. [49] FAGER P,CALZAVARA M,SGARBOSSA F. Modelling time efficiency of cobot-supported kit preparation[J]. The International Journal of Advanced Manufacturing Technology,2020,106:2227-2241. [50] 姜杰文. 基于手势识别的协作机器人人机交互系统设计[D]. 大连:大连理工大学,2019.JIANG Jiewen. Design of human-computer interaction system for collaborative robot based on gesture recognition[D]. Dalian:Dalian University of Technology,2019. [51] 张秀丽,谷小旭,赵洪福,等.一种基于串联弹性驱动器的柔顺机械臂设计[J]. 机器人,2016,38(4): 385-394.ZHANG Xiuli,GU Xiaoxu,ZHAO Hongfu,et al. Design of a compliant robotic arm based on series elastic actuator[J]. Robot,2016,38(4):385-394. [52] MOURTZIS D,VLACHOU E,MILAS N. Industrial big data as a result of IoT adoption in manufacturing[J]. Procedia Cirp,2016,55:290-295. [53] YANG F,WANG M. A review of systematic evaluation and improvement in the big data environment[J]. Frontiers of Engineering Management,2020,7(1): 27-46. [54] 雷亚国,贾峰,周昕,等. 基于深度学习理论的机械装备大数据健康监测方法[J]. 机械工程学报,2015,51(21):49-56.LEI Yaguo,JIA Feng,ZHOU Xin,et al. A deep learning-based method for machinery health monitoring with big data[J]. Journal of Mechanical Engineering,2015,51(21):49-56. [55] 廖小平,陈楷,鲁娟. 基于磨损监测保持切削加工表面质量稳定的实时控制研究[J]. 机械工程学报,2020,56(11):252-260.LIAO Xiaoping,CHEN Kai,LU Juan. Research on real-time control of machining surface quality stability based on wear monitoring[J]. Journal of Mechanical Engineering,2020,56(11):252-260. [56] DRURY C G. Human factors/ergonomics implications of big data analytics:Chartered institute of ergonomics and human factors annual lecture[J]. Ergonomics,2015,58(5):659-673. [57] 陶飞,刘蔚然,张萌,等. 数字孪生五维模型及十大领域应用[J]. 计算机集成制造系统,2019,25(1):1-18.TAO Fei,LIU Weiran,ZHANG Meng,et al. Five-dimension digital twin model and its ten applications[J]. Computer Integrated Manufacturing Systems,2019,25(1):1-18. [58] 李浩,刘根,文笑雨,等. 面向人机交互的数字孪生系统工业安全控制体系与关键技术[J]. 计算机集成制造系统,2021,27(2): 374-389.LI Hao,LIU Gen,WEN Xiaoyu,et al. Industrial safety control system and key technologies of digital twin system oriented to human-machine interaction[J]. Computer Integrated Manufacturing Systems,2021,27(2):374-389. [59] HE F,ONG S K,NEE A Y C. An integrated mobile augmented reality digital twin monitoring system[J]. Computers,2021,10(8):99. [60] WANG Q,JIAO W,WANG P,et al. Digital twin for human-robot interactive welding and welder behavior analysis[J]. IEEE/CAA Journal of Automatica Sinica,2020,8(2):334-343. [61] WANG T,LI J,DENG Y,et al. Digital twin for human-machine interaction with convolutional neural network[J]. International Journal of Computer Integrated Manufacturing,2021:1-10. [62] BILBERG A,MALIK A A. Digital twin driven human–robot collaborative assembly[J]. CIRP Annals,2019,68(1):499-502. [63] 刘晓阳,刘恩福,靳江艳. 基于蚁群算法的异步并行装配序列规划方法[J]. 机械工程学报,2019,55(9): 107-119.LIU Xiaoyang,LIU Enfu,JIN Jiangyan. Asynchronous parallel assembly sequence planning based on ant colony algorithm[J]. Journal of Mechanical Engineering,2019,55(9):107-119. [64] 武颖,姚丽亚,熊辉,等. 基于数字孪生技术的复杂产品装配过程质量管控方法[J]. 计算机集成制造系统,2019,25(6): 1568-1575.WU Ying,YAO Liya,XIONG Hui,et al. Quality control method of complex product assembly process based on digital twin technology[J]. Computer Integrated Manufacturing Systems,2019,25(6):1568-1575. [65] WANG Z,BAI X,ZHANG S,et al. User-oriented AR assembly guideline:A new classification method of assembly instruction for user cognition[J]. The International Journal of Advanced Manufacturing Technology,2021,112(1):41-59. [66] MILLER J,HOOVER M,WINER E. Mitigation of the Microsoft HoloLens’ hardware limitations for a controlled product assembly process[J]. The International Journal of Advanced Manufacturing Technology,2020,109(5):1741-1754. [67] WANG X,ONG S K,NEE A Y C. A comprehensive survey of augmented reality assembly research[J]. Advances in Manufacturing,2016,4(1):1-22. [68] ONG S K,PANG Y,NEE A Y C. Augmented reality aided assembly design and planning[J]. CIRP Annals,2007,56(1):49-52. [69] 丁汉. 机器人与智能制造技术的发展思考[J]. 机器人技术与应用,2016(4):7-10.DING Han. Robot and intelligent manufacturing technology development thinking[J]. Robot Technique and Application,2016(4):7-10. [70] 易怀安,刘坚,路恩会. 基于图像清晰度评价的磨削表面粗糙度检测方法[J]. 机械工程学报,2016,52(16): 15-21.YI Huaian,LIU Jian,LU Enhui. Detection method of grinding surface roughness based on image definition evaluation[J]. Journal of Mechanical Engineering,2016,52(16):15-21. [71] 王田苗,陶永. 我国工业机器人技术现状与产业化发展战略[J]. 机械工程学报,2014,5(9):1-13.WANG Tianmiao,TAO Yong. Research status and industrialization development strategy of chinese industrial robot[J]. Journal of Mechanical Engineering,2014,5(9):1-13. [72] BARBOSA W S,GIOIA M M,NATIVIDADE V G,et al. Industry 4.0: Examples of the use of the robotic arm for digital manufacturing processes[J]. International Journal on Interactive Design and Manufacturing (IJIDeM),2020,14(4):1569-1575. [73] HUBER A,WEISS A. Developing human-robot interaction for an industry 4.0 robot: how industry workers helped to improve remote-HRI to physical-HRI[C]//Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction. 2017:137-138. [74] KHALID A,KIRISCI P,GHRAIRI Z,et al. Towards implementing safety and security concepts for human-robot collaboration in the context of industry 4.0[C]//39th International MATADOR Conference on Advanced Manufacturing (Manchester,UK). 2017: 0-7. [75] GONZALEZ A G C,ALVES M V S,VIANA G S,et al. Supervisory control-based navigation architecture: a new framework for autonomous robots in industry 4.0 environments[J]. IEEE Transactions on Industrial Informatics,2017,14(4):1732-1743. [76] LIAGKOU V,SALMAS D,STYLIOS C. Realizing virtual reality learning environment for industry 4.0[J]. Procedia CIRP,2019,79:712-717. [77] 蔡宝,朱文华,孙张驰,等. 虚拟现实技术在铣削加工实训教学中的应用[J]. 实验技术与管理,2020,37(1):137-140.CAI Bao,ZHU Wenhua,SUN Zhangchi,et al. Application of virtual reality technology in milling practical training teaching[J]. Experimental Technology and Management,2020,37(1):137-140. [78] SALAH B,ABIDI M H,MIAN S H,et al. Virtual reality-based engineering education to enhance manufacturing sustainability in industry 4.0[J]. Sustainability,2019,11(5):1477. [79] ROLDÁN J J,CRESPO E,MARTÍN-BARRIO A,et al. A training system for industry 4.0 operators in complex assemblies based on virtual reality and process mining[J]. Robotics and Computer-integrated Manufacturing,2019,59:305-316. [80] SCHROEDER H,FRIEDEWALD A,KAHLEFENDT C,et al. Virtual reality for the training of operators in industry 4.0[C]//IFIP International Conference on Advances in Production Management Systems. Springer,Cham,2017:330-337. |
[1] | DI Zijun, YUAN Dongfeng, LI Dongyang, LIANG Daojun, ZHOU Xiaotian, XIN Miaomiao, CAO Feng, LEI Tengfei. Tool Fault Diagnosis Method Based on Multiscale-efficient Channel Attention Network [J]. Journal of Mechanical Engineering, 2024, 60(6): 82-90. |
[2] | WANG Yuefei, WANG Chao, XU Yutao, SUN Rui, XIAO Kai, WANG Kailin. Digital Twin Task Scheduling Method for Jobs of Intelligent Manufacturing Unit under Edge-cloud Collaboration [J]. Journal of Mechanical Engineering, 2024, 60(6): 137-152. |
[3] | SU Jiantao, DONG Shaohua, ZHU Shimin. Research on Machine Fault Rescheduling Problem of Multi Objective Hybrid Flow Shop Based on Intelligent Manufacturing [J]. Journal of Mechanical Engineering, 2024, 60(4): 438-448. |
[4] | JIANG Zhoumingju, XIONG Yi, WANG Baicun. Human-machine Collaborative Additive Manufacturing for Industry 5.0 [J]. Journal of Mechanical Engineering, 2024, 60(3): 238-253. |
[5] | WANG Yaonan, XIE He, DENG Jingdan, MAO Jianxu, LI Wenlong, ZHANG Hui. Overview of Key Technologies for Measurement Robots in Intelligent Manufacturing [J]. Journal of Mechanical Engineering, 2024, 60(16): 1-18. |
[6] | DING Mingna, LIU Xianli, YUE Caixu, FAN Mengchao, GU Hao. Design, Manufacturing, Management and Control Technology of Cutting Tools for Intelligent Manufacturing Process [J]. Journal of Mechanical Engineering, 2023, 59(19): 429-459. |
[7] | WANG Junliang, GAO Pengjie, ZHANG Jie, WANG Lihui. A Review of Manufacturing Big Data: Connotation, Methodology, Application and Trends [J]. Journal of Mechanical Engineering, 2023, 59(12): 1-16. |
[8] | ZANG Jiyuan, LIU Yufei, WANG Baicun, MIAO Zhongzhen, XUE Yuan, LI Peigen. Technology Forecasting and Roadmapping of Intelligent Manufacturing by 2035 [J]. Journal of Mechanical Engineering, 2022, 58(4): 285-304. |
[9] | LAN Jian, QIAN Dongsheng, DENG Jiadong, HUA Lin. Development of Green and Intelligent Rolling for High Performance Ring Parts [J]. Journal of Mechanical Engineering, 2022, 58(20): 186-197. |
[10] | WANG Shuting, LI Xin, ZHANG Fen, XIE Yuanlong, WANG Junfeng, DING Han, SHAO Xinyu. Construction of Intelligent Manufacturing Training Practice Teaching System for the Cultivation of Big Engineering Perspective [J]. Journal of Mechanical Engineering, 2022, 58(18): 319-332. |
[11] | XUE Yuan, ZANG Jiyuan, KONG Dejing, ZHOU Yuan, WANG Baicun, LENG Jiewu, HUANG Qingxue. Evolution and Innovative Implementation of Industrial Model for Intelligent Manufacturing [J]. Journal of Mechanical Engineering, 2022, 58(18): 303-318. |
[12] | YANG Geng, ZHOU Huiying, WANG Baicun. Digital Twin-driven Smart Human-machine Collaboration: Theory, Enabling Technologies and Applications [J]. Journal of Mechanical Engineering, 2022, 58(18): 279-291. |
[13] | MA Nanfeng, YAO Xifan, CHEN Feixiang, YU Hongjun, WANG Kesai. Human-centric Smart Manufacturing for Industry 5.0 [J]. Journal of Mechanical Engineering, 2022, 58(18): 88-102. |
[14] | ZHUANG Cunbo, LIU Jianhua, ZHANG Lei. Connotation, Architecture and Enabling Technology of Industrial 5.0 [J]. Journal of Mechanical Engineering, 2022, 58(18): 75-87. |
[15] | YAO Xifan, MA Nanfeng, ZHANG Cunji, ZHOU Jiajun. Human-centric Smart Manufacturing: Evolution and Outlook [J]. Journal of Mechanical Engineering, 2022, 58(18): 2-15. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||