ZHAO Jie, WU Rui, ZHANG He, ZHU Yanhe, ZANG Xizhe. Research on Operation Skill Transfer and Control Oriented to Complex Force Interaction Tasks[J]. Journal of Mechanical Engineering, 2022, 58(18): 116-132.
[1] 曾超,杨辰光,李强,等. 人-机器人技能传递研究进展[J]. 自动化学报,2019,45(10):1813-1828. Zeng Chao,Yang Chenguang,Li Qiang,et al. Research progress on human-robot skill transfer[J]. Acta Automatica Sinica,2019,45(10):1813-1828. [2] Billard A,Kragic D. Trends and challenges in robot manipulation[J]. Science,2019,364(6446):eaat8414. [3] Rozo L,Calinon S,Caldwell D,et al. Learning collaborative impedance-based robot behaviors[J]. AAAI Conference on Artificial Intelligence,2013:1422-1428. [4] Rozo L,Calinon S,Caldwell D G,et al. Learning physical collaborative robot behaviors from human demonstrations[J]. IEEE Transactions on Robotics,2016,32(3):513-527. [5] Kronander K,Billard A. Learning compliant manipulation through kinesthetic and tactile human-robot interaction[C]//IEEE Transactions on Haptics. 2014,7(3):367-380. [6] Khansari-Zadeh S M,Khatib O. Learning potential functions from human demonstrations with encapsulated dynamic and compliant behaviors[J]. Autonomous Robots,Springer US,2017,41(1):45-69. [7] Peternel L,Petrič T,Oztop E,et al. Teaching robots to cooperate with humans in dynamic manipulation tasks based on multi-modal human-in-the-loop approach[J]. Autonomous Robots,2014,36(1-2):123-136. [8] Wu R,Zhang H,Peng T,et al. Human-robot interaction and demonstration learning mode based on electromyogram signal and variable impedance control[J]. Mathematical Problems in Engineering,Hindawi,2018,2018. [9] Sheridan T B. Telerobotics[J]. Automatica,1989,25(4):487-507. [10] Calinon S,Billard A. Incremental learning of gestures by imitation in a humanoid robot[C]//Proceeding of the ACM/IEEE International Conference on Human-robot Interaction - HRI ’07. New York,New York,USA:ACM Press,2007:255. [11] Kitagawa M,Okamura A M,Bethea B T,et al. Analysis of suture manipulation forces for teleoperation with force feedback[J]. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),2002,2488:155-162. [12] Rank M,Hirche S. Cutaneous haptic feedback in robotic teleoperation(Springer series on touch and haptic systems)[J]. Multisensory Softness,2014(8):147-165. [13] Wu R,Zhang H,Peng T,et al. Variable impedance interaction and demonstration interface design based on measurement of arm muscle co-activation for demonstration learning[J]. Biomedical Signal Processing and Control,2019,51:8-18. [14] Zahedi E,Khosravian F,Wang W,et al. Towards skill transfer via learning-based guidance in human-robot interaction:An application to orthopaedic surgical drilling skill[J]. Journal of Intelligent and Robotic Systems:Theory and Applications,Journal of Intelligent & Robotic Systems,2020,98(3-4):667-678. [15] Zahedi E,Dargahi J,Kia M,et al. Gesture-based adaptive haptic guidance:A comparison of discriminative and generative modeling approaches[J]. IEEE Robotics and Automation Letters,2017,2(2):1015-1022. [16] Coles T R,Meglan D,John N W. The role of haptics in medical training simulators:A survey of the state of the art[J]. IEEE Transactions on Haptics,2011,4(1):51-66. [17] Wu R,Billard A. Learning from demonstration and interactive control of variable-impedance to cut soft tissues[J/OL]. [2000-01-08]. https://www.epfl.ch/labs/lasa/sahr/publications/ [18] Bernardino A,Henriques M,Hendrich N,et al. Precision grasp synergies for dexterous robotic hands[C]//2013 IEEE International Conference on Robotics and Biomimetics,ROBIO 2013. 2013:62-67. [19] Ureche L P,Billard A. Constraints extraction from asymmetrical bimanual tasks and their use in coordinated behavior[J]. Robotics and Autonomous Systems,2018,103:222-235. [20] Yao K,Billard A. An inverse optimization approach to understand human acquisition of kinematic coordination in bimanual fine manipulation tasks[J]. Biological Cybernetics,Springer Berlin Heidelberg,2020,114(1):63-82. [21] Yao K,Sternad D,Billard A,et al. Effect of task conditions on human hand pose selection strategies in bimanual fine manipulation rask[C/CD]//Neural Control of Movement 2022 Annual Meeting. Society for Neural Control of Movement,2022. [22] Howard I S,Ingram J N,Körding K P,et al. Statistics of natural movements are reflected in motor errors[J]. Journal of Neurophysiology,2009,102(3):1902-1910. [23] MARTIN-MARTIN R, LEE M A, GARDNER R, et al. Variable impedance control in end-effector space: An action space for reinforcement learning in contact-rich tasks[C]//2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2019:1010-1017. [24] YU X, LI Y, ZHANG S, et al. Estimation of human impedance and motion intention for constrained human-robot interaction[J]. Neurocomputing, 2020, 390: 268-279. [25] Silverio J,Huang Y,Abu-Dakka F J,et al. Uncertainty-aware imitation learning using kernelized movement primitives[C]//IEEE International Conference on Intelligent Robots and Systems,2019:90-97. [26] Burdet E,Osu R,Franklin D W,et al. The central nervous system stabilizes unstable dynamics by learning optimal impedance[J]. Nature,2001,414(6862):446-449. [27] Trumbower R D,Krutky M A,Yang B S,et al. Use of self-selected postures to regulate multi-joint stiffness during unconstrained tasks[J]. PLoS ONE,2009,4(5):e5411. [28] Shin E C,Ryu J H,Yang G H. Estimation of human arm impedance in accordance with the master device types and gripping posture[C]//IEEE/ASME International Conference on Advanced Intelligent Mechatronics,AIM,2015,2015-Augus:1744-1748. [29] Franklin D W,Liaw G,Milner T E,et al. Endpoint stiffness of the arm is directionally tuned to instability in the environment[J]. Journal of Neuroscience,2007,27(29):7705-7716. [30] Erden M S,Billard A. Hand impedance measurements during interactive manual welding with a robot[J]. IEEE Transactions on Robotics,2015,31(1):168-179. [31] Flash T,Mussa-Ivaldi F. Human arm stiffness characteristics during the maintenance of posture[J]. Experimental Brain Research,1990,82(2):315-326. [32] Gomi H,Kawato M. Human arm stiffness and equilibrium-point trajectory during multi-joint movement[J]. Biological Cybernetics,1997,76(3):163-171. [33] Tee K P,Burdet E,Chew C M,et al. A model of force and impedance in human arm movements[J]. Biological Cybernetics,2004,90(5):368-375. [34] Lloyd D G,Besier T F. An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo[J]. Journal of Biomechanics,2003,36(6):765-776. [35] YAO K,STERNAD D,BILARD A,et al. A hybrid BMI-based exoskeleton for paresis:EMG control for assisting arm movements[J]. Journal of Neural Engineering,2017,14(1):1741-2552. [36] Ajoudani A,Fang C,Tsagarakis N,et al. Reduced-complexity representation of the human arm active endpoint stiffness for supervisory control of remote manipulation[J]. The International Journal of Robotics Research,2017:027836491774403. [37] Ajoudani A,Tsagarakis N,Bicchi A. Teleimpedance:teleoperation with impedance regulation using a body-machine interface[J]. ijrr,2012,110:19-31. [38] Ajoudani A,Fang C,Tsagarakis N G,et al. A reduced-complexity description of arm endpoint stiffness with applications to teleimpedance control[C]//IEEE International Conference on Intelligent Robots and Systems,2015,2015-Decem:1017-1023. [39] Wu R,Zhang H,Zhao J. Robot variable impedance skill transfer and learning framework based on a simplified human arm impedance model[J]. IEEE Access,2020,8:225627-225638. [40] Billard A,Calinon S. Handbook of robotics chapter 59 :Robot programming by demonstration[J]. Robotics,2007,48(21):1371-1394. [41] Khansari-Zadeh S M,Billard A. Learning stable nonlinear dynamical systems with Gaussian mixture models[J]. IEEE Transactions on Robotics,2011,27(5):943-957. [42] Ijspeert A J,Nakanishi J,Schaal S. Movement imitation with nonlinear dynamical systems in humanoid robots[C]//Proceedings - IEEE International Conference on Robotics and Automation. 2002,2:1398-1403. [43] Pastor P,Hoffmann H,Asfour T,et al. Learning and generalization of motor skills by learning from demonstration[C]//Proceedings - IEEE International Conference on Robotics and Automation. 2009:763-768. [44] Ude A,Gams A,Asfour T,et al. Task-specific generalization of discrete and periodic dynamic movement primitives[J]. IEEE Transactions on Robotics,2010,26(5):800-815. [45] Righetti L,Buchli J,Ijspeert A J. Dynamic Hebbian learning in adaptive frequency oscillators[J]. Physica D:Nonlinear Phenomena,2006,216(2):269-281. [46] Degallier S,Righetti L,Gay S,et al. Toward simple control for complex,autonomous robotic applications:Combining discrete and rhythmic motor primitives[J]. Autonomous Robots,2011,31(2-3):155-181. [47] Calinon S,Sauser E L,Billard A G,et al. Evaluation of a probabilistic approach to learn and reproduce gestures by imitation[C]//2010 IEEE International Conference on Robotics and Automation. IEEE,2010:2671-2676. [48] Kober J,MUlling K,KrOmer O,et al. Movement templates for learning of hitting and batting[C]//2010 IEEE International Conference on Robotics and Automation. IEEE,2010:853-858. [49] Ijspeert A J. Central pattern generators for locomotion control in animals and robots:A review[J]. Neural Networks,2008,21(4):642-653. [50] Grillner S. Neurobiological bases of rhythmic motor acts in vertebrates[J]. Science,1985,228(4696):143-149. [51] Bullock D,Bongers R M,Lankhorst M,et al. A vector-integration-to-endpoint model for performance of viapoint movements[J]. Neural Networks,1999,12(1):1-29. [52] Shon A P,Grochow K,Rao R P N. Robotic imitation for human motion capture using gaussian processes[C]//5th IEEE-RAS International Conference on Humanoid Robots,2005. IEEE,2005:129-134. [53] Calinon S,Guenter F,Billard A. On learning,representing,and generalizing a task in a humanoid robot[J]. IEEE Transactions on Systems,Man,and Cybernetics,Part B:Cybernetics,2007,37(2):286-298. [54] Billard A G,Calinon S,Guenter F. Discriminative and adaptive imitation in uni-manual and bi-manual tasks[J]. Robotics and Autonomous Systems,2006,54(5):370-384. [55] Paik J K,Katsaggelos A K. Image restoration using a modified Hopfield network[J]. IEEE Transactions on Image Processing,1992,1(1):49-63. [56] Amin M H,Andriyash E,Rolfe J,et al. Quantum Boltzmann machine[J]. Physical Review X,American Physical Society,2018,8(2):21050. [57] Atiya A F,Parlos A G. New results on recurrent network training:unifying the algorithms and accelerating convergence[J]. IEEE Transactions on Neural Networks,2000,11(3):697-709. [58] Yang C,Zeng C,Fang C,et al. A DMPs-based framework for robot learning and generalization of humanlike variable impedance skills[J]. IEEE/ASME Transactions on Mechatronics,IEEE,2018,23(3):1193-1203. [59] Shaal S,Kotosaka S,Sternad D. Nonlinear dynamical systems as movement primitives[C]// IEEE Intemational Conference on Humanoid Robotics,2001. [60] Ijspeert A J,Nakanishi J,Shibata T,et al. Nonlinear dynamical systems for imitation with humanoid robots[C]//Proceedings of the IEEE International Conference on Humanoid Robots,2001:219-226. [61] Nakanishi J,Morimoto J,Endo G,et al. Learning from demonstration and adaptation of biped locomotion[J]. Robotics and Autonomous Systems,2004,47(2-3):79-91. [62] Kulvicius T,Ning K,Tamosiunaite M,et al. Joining movement sequences:Modified dynamic movement primitives for robotics applications exemplified on handwriting[J]. IEEE Transactions on Robotics,2012,28(1):145-157. [63] Khansari-Zadeh S M,Billard A. A dynamical system approach to realtime obstacle avoidance[J]. Autonomous Robots,2012,32(4):433-454. [64] Khansari-Zadeh S M,Billard A. Learning control Lyapunov function to ensure stability of dynamical system-based robot reaching motions[J]. Robotics and Autonomous Systems,Elsevier,2014,62(6):752-765. [65] Shavit Y,Figueroa N,Salehian S S M,et al. Learning augmented joint-space task-oriented dynamical systems:A linear parameter varying and synergetic control approach[J]. IEEE Robotics and Automation Letters,IEEE,2018,3(3):2718-2725. [66] Figueroa N,Billard A. Modeling compositions of impedance-based primitives via dynamical systems[C/CD]//Proceedings of the Workshop on Cognitive Whole-Body Control for Compliant Robot Manipulation (COWB-COMP),2018. [67] Kronander K,Khansari M,Billard A. Incremental motion learning with locally modulated dynamical systems[J]. Robotics and Autonomous Systems,2015,70:52-62. [68] Perrin N,Schlehuber-Caissier P. Fast diffeomorphic matching to learn globally asymptotically stable nonlinear dynamical systems[J]. Systems and Control Letters,Elsevier B.V.,2016,96:51-59. [69] Amanhoud W,Khoramshahi M,Billard A. A dynamical system approach to motion and force generation in contacttasks[C/CD]//Robotics: Science and Systems,2019. [70] Amanhoud W,Khoramshahi M,Bonnesoeur M,et al. Force adaptation in contact tasks with dynamical systems[J]. Proceedings of 2020 IEEE International Conference on Robotics and Automation,2020(March):6841-6847. [71] Salehian S S M,Billard A. A dynamical system based approach for controlling robotic manipulators during non-contact / contact transitions[J]. IEEE Robotics and Automation Letters,2018,3(4):2738-2745. [72] 付乐,武睿,赵杰. 协作机器人安全规范:ISO/TS 15066 的演变与启示[J]. 机器人,2017 (4):532-540.Fu Le,Wu Rui,Zhao Jie. The evolution and enlightenment of safety specification of cooperativerobots:ISO/TS 15066[J]. Robot,2017,39(4):532-540. [73] Ott C,Mukherjee R,Nakamura Y. Unified impedance and admittance control[C]//Robotics and Automation (ICRA),2010 IEEE International Conference on,2010:554-561. [74] ARAI H,TACHI S. Position control of a manipulator with passive joints using coupled dynamics[J]. Transactions of the Society of Instrument and Control Engineers,1989,25(9):1012-1017. [75] Van der Linde R Q,Lammertse P. HapticMaster -A generic force controlled robot for human interaction[J]. Industrial Robot:An International Journal,2003,30(6):515-524. [76] Chiaverini S,Sciavicco L. The parallel approach to force/position control of robotic manipulators[J]. IEEE Transactions on Robotics and Automation,1993,9(4):361-373. [77] Franklin D W,Burdet E,Peng Tee K,et al. CNS learns stable,accurate,and efficient movements using a simple algorithm[J]. Journal of Neuroscience,2008,28(44):11165-11173. [78] Hogan N. Impedance control:An approach to manipulation 1[J]. Techniques,1985,107:304-313. [79] Yu W,Rosen J,Li X. PID admittance control for an upper limb exoskeleton[C]//Proceedings of the 2011 American Control Conference,2011:1124-1129. [80] Albu-Schaffer A,Eiberger O,Grebenstein M,et al. Soft robotics[J]. IEEE Robotics & Automation Magazine,2008,15(3):20-30. [81] Wolf S,Hirzinger G. A new variable stiffness design:Matching requirements of the next robot generation[J]. Proceedings-IEEE International Conference on Robotics and Automation,2008:1741-1746. [82] LE TIEN L,ALBU-SCHÄFFER A,DE LUCA A,et al. Friction observer and compensation for control of robots with joint torque measurement[C]//2008 IEEE/RSJ International Conference on Intelligent Robots and Systems,IROS,2008:3789-3795. [83] Lin C,Chang P,Luh S J. Formulation and optimization of cubic polynomial joint trajectories for mechanical manipulators[C]//1982 21st IEEE Conference on Decision and Control. IEEE,1982:330-335. [84] Shamma J S,Athans M. Gain scheduling:Potential hazards and possible remedies[J]. IEEE Control Systems,1992,12(3):101-107. [85] Ferraguti F,Secchi C,Fantuzzi C. A tank-based approach to impedance control with variable stiffness[C]// Proceedings - IEEE International Conference on Robotics and Automation,IEEE,2013:4948-4953. [86] Yang C,Ganesh G,Haddadin S,et al. Human-like adaptation of force and impedance in stable and unstable interactions[J]. IEEE Transactions on Robotics,2011,27(5):918-930. [87] Kronander K,Billard A. Stability considerations for variable impedance control[J]. IEEE Transactions on Robotics,2016(99):1298-1305. [88] Duindam V,Stramigioli S,Scherpen J M A. Passive compensation of nonlinear robot dynamics[J]. IEEE Transactions on Robotics and Automation,2004,20(3):480-487. [89] Li P Y,Horowitz R. Passive velocity field control of mechanical manipulators[J]. IEEE Transactions on Robotics and Automation,1999,15(4):751-763. [90] Kronander K,Billard A. Passive interaction control with dynamical systems[J]. IEEE Robotics and Automation Letters,2016,1(1):106-113. [91] Mitsioni I,Karayiannidis Y,Kragic D. Modelling and learning dynamics for robotic food-cutting[J/OL]. [2022-01-22]. https://doi.org/10.48550/arXiv.2003.09179. [92] Gemici M C,Saxena A. Learning haptic representation for manipulating deformable food objects[C]//IEEE International Conference on Intelligent Robots and Systems,IEEE,2014:638-645.